亚甲基双(羟基苯甲酸)及其相关锌(II)络合物的哺乳动物细胞毒性、抗菌活性和特性

Crystals Pub Date : 2024-01-17 DOI:10.3390/cryst14010088
Ayman H. Ahmed, Ibrahim O. Althobaiti, Marwah Aljohani, Ehab S. Gad, Yazeed M. Asiri, Omar A. Hussein
{"title":"亚甲基双(羟基苯甲酸)及其相关锌(II)络合物的哺乳动物细胞毒性、抗菌活性和特性","authors":"Ayman H. Ahmed, Ibrahim O. Althobaiti, Marwah Aljohani, Ehab S. Gad, Yazeed M. Asiri, Omar A. Hussein","doi":"10.3390/cryst14010088","DOIUrl":null,"url":null,"abstract":"Formaldehyde, sulfuric acid and salicylic acid were combined to create a 3,3′-methylenebis(2-hydroxybenzoic acid) (MHB) ligand, which was subsequently permitted to bind with zinc(II) ions. The ligand and its zinc(II) complex (Zn–MHB) have been described by a combination of elemental analyses, spectral analyses (UV–Vis, IR, MS and NMR), XRD, TEM, as well as TGA measurement. The ligand has been suggested to coordinate to the zinc center in a tetradentate manner forming the binuclear tetrahedral complex. An X-ray analysis indicated a considerable difference between MHB (crystalline) and Zn–MHB (amorphous). The UV–Vis spectra were used to determine the optical properties such as bandgap, refractive index, optical conductivity and penetration depth. The possibility of employing the samples for optoelectronic applications was indicated from the band gap values which underlie the range of semiconductors. TEM revealed the spherical shapes and mutation of ligand particles into the nano-scale by complexation. The antimicrobial potential of the MHB towards Gram-positive and Gram-negative bacterial growths has been investigated. The results suggested that it would be possible to employ MHB to prevent bacterial development, particularly that of salmonella typhimurium. The cytotoxicity of the MHB was assessed against two types of mammalian cells: VERO (the kidney of an African green monkey) and HFB4 (human skin melanocytes). Lower sensitivity was observed in VERO cells.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":" 1186","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex\",\"authors\":\"Ayman H. Ahmed, Ibrahim O. Althobaiti, Marwah Aljohani, Ehab S. Gad, Yazeed M. Asiri, Omar A. Hussein\",\"doi\":\"10.3390/cryst14010088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formaldehyde, sulfuric acid and salicylic acid were combined to create a 3,3′-methylenebis(2-hydroxybenzoic acid) (MHB) ligand, which was subsequently permitted to bind with zinc(II) ions. The ligand and its zinc(II) complex (Zn–MHB) have been described by a combination of elemental analyses, spectral analyses (UV–Vis, IR, MS and NMR), XRD, TEM, as well as TGA measurement. The ligand has been suggested to coordinate to the zinc center in a tetradentate manner forming the binuclear tetrahedral complex. An X-ray analysis indicated a considerable difference between MHB (crystalline) and Zn–MHB (amorphous). The UV–Vis spectra were used to determine the optical properties such as bandgap, refractive index, optical conductivity and penetration depth. The possibility of employing the samples for optoelectronic applications was indicated from the band gap values which underlie the range of semiconductors. TEM revealed the spherical shapes and mutation of ligand particles into the nano-scale by complexation. The antimicrobial potential of the MHB towards Gram-positive and Gram-negative bacterial growths has been investigated. The results suggested that it would be possible to employ MHB to prevent bacterial development, particularly that of salmonella typhimurium. The cytotoxicity of the MHB was assessed against two types of mammalian cells: VERO (the kidney of an African green monkey) and HFB4 (human skin melanocytes). Lower sensitivity was observed in VERO cells.\",\"PeriodicalId\":505131,\"journal\":{\"name\":\"Crystals\",\"volume\":\" 1186\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14010088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14010088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲醛、硫酸和水杨酸被结合成一种 3,3′-亚甲基双(2-羟基苯甲酸)(MHB)配体,随后允许它与锌(II)离子结合。配体及其锌(II)配合物(Zn-MHB)已通过元素分析、光谱分析(紫外-可见光、红外、质谱和核磁共振)、XRD、TEM 以及 TGA 测量进行了描述。配体以四价方式与锌中心配位,形成双核四面体复合物。X 射线分析表明,MHB(结晶)和 Zn-MHB(无定形)之间存在很大差异。紫外-可见光谱被用来测定光学特性,如带隙、折射率、光导率和穿透深度。样品的带隙值显示了将其用于光电应用的可能性,带隙值是半导体的基础。透射电子显微镜显示了配体颗粒的球形形状,并通过络合作用将配体颗粒变为纳米级。还研究了 MHB 对革兰氏阳性和革兰氏阴性细菌生长的抗菌潜力。结果表明,可以利用 MHB 来防止细菌生长,尤其是伤寒沙门氏菌。我们还评估了 MHB 对两种哺乳动物细胞的细胞毒性:VERO(非洲绿猴的肾脏)和 HFB4(人类皮肤黑色素细胞)。在 VERO 细胞中观察到的敏感性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mammalian Cell Cytotoxicity, Antibacterial Activity and the Properties of Methylenebis(Hydroxybenzoic Acid) and Its Related Zinc(II) Complex
Formaldehyde, sulfuric acid and salicylic acid were combined to create a 3,3′-methylenebis(2-hydroxybenzoic acid) (MHB) ligand, which was subsequently permitted to bind with zinc(II) ions. The ligand and its zinc(II) complex (Zn–MHB) have been described by a combination of elemental analyses, spectral analyses (UV–Vis, IR, MS and NMR), XRD, TEM, as well as TGA measurement. The ligand has been suggested to coordinate to the zinc center in a tetradentate manner forming the binuclear tetrahedral complex. An X-ray analysis indicated a considerable difference between MHB (crystalline) and Zn–MHB (amorphous). The UV–Vis spectra were used to determine the optical properties such as bandgap, refractive index, optical conductivity and penetration depth. The possibility of employing the samples for optoelectronic applications was indicated from the band gap values which underlie the range of semiconductors. TEM revealed the spherical shapes and mutation of ligand particles into the nano-scale by complexation. The antimicrobial potential of the MHB towards Gram-positive and Gram-negative bacterial growths has been investigated. The results suggested that it would be possible to employ MHB to prevent bacterial development, particularly that of salmonella typhimurium. The cytotoxicity of the MHB was assessed against two types of mammalian cells: VERO (the kidney of an African green monkey) and HFB4 (human skin melanocytes). Lower sensitivity was observed in VERO cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on Pulsed Gas Tungsten Arc Lap Welding Techniques for 304L Austenitic Stainless Steel Critical Aluminum Etch Material Amount for Local Droplet-Etched Nanohole-Based GaAs Quantum Dots Preparation, Thermal Behavior, and Conformational Stability of HMX/Cyclopentanone Cocrystallization Terahertz Dielectric Metasurface for Reconfigurable Multifunctional Holographic Dual-Mode Imaging Controlled by Graphene Impact of Density Variations and Growth Direction in 3D-Printed Titanium Alloys on Surface Topography and Bonding Performance with Dental Resins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1