预测航空航天设备电磁发射频谱的深度学习方法

IF 1.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Science Measurement & Technology Pub Date : 2024-01-17 DOI:10.1049/smt2.12178
Yuting Zhang
{"title":"预测航空航天设备电磁发射频谱的深度学习方法","authors":"Yuting Zhang","doi":"10.1049/smt2.12178","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold-based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short-term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12178","citationCount":"0","resultStr":"{\"title\":\"Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment\",\"authors\":\"Yuting Zhang\",\"doi\":\"10.1049/smt2.12178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold-based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short-term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种深度学习方法,用于预测航空航天产品电磁兼容(EMC)测试中的电磁发射频谱。采用基于阈值的数据分解方法提出尖峰信号,重构原始测试数据,解决了深度学习方法处理电磁兼容(EMC)测试频谱的过拟合与预测精度之间的矛盾。利用长短期记忆神经网络架构预测电磁辐射频谱,采用贝叶斯优化方法优化网络超参数,并在损失函数中引入获取函数,提高深度学习网络的综合训练优化能力。将该方法应用于三个数值实例:信号线电流传导发射、电力线电压传导发射和电场辐射发射。分析结果表明,在 95% 的置信度下,预测的电磁发射光谱与测试结果基本一致。预测结果可作为航空航天电子设备电磁兼容性评估的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning method for predicting electromagnetic emission spectrum of aerospace equipment

This paper proposes a deep learning method to predict the electromagnetic emission spectrum in the electromagnetic compatibility (EMC) test of aerospace products. A threshold-based data decomposition method is used to propose the spike signal, reconstruct the original test data, and solve the contradiction between the overfitting and prediction accuracy of the deep learning method to deal with the EMC test spectrum. Using a long short-term memory neural network architecture for predicting electromagnetic emission spectrum, the Bayesian optimization method is used to optimize the network hyperparameter, and the acquisition function is introduced into the loss function to improve the comprehensive training optimization of deep learning network. Apply the method to three numerical examples: signal line current conduction emission, power line voltage conduction emission, and electric field radiation emission. The analysis results indicate that at a 95% confidence level, the predicted electromagnetic emission spectrum is basically consistent with the test results. The prediction results can be used as the basis for EMC evaluation of aerospace electronic equipment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Science Measurement & Technology
Iet Science Measurement & Technology 工程技术-工程:电子与电气
CiteScore
4.30
自引率
7.10%
发文量
41
审稿时长
7.5 months
期刊介绍: IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques. The major themes of the journal are: - electromagnetism including electromagnetic theory, computational electromagnetics and EMC - properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale - measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.
期刊最新文献
Research on the online monitoring technique for transformer oil level based on ultrasonic sensors Reconstruction of rough surfaces from a single receiver at grazing angle Thermal behaviour of a transformer mineral oil-tank surface under incipient turn-to-turn short-circuit fault Simultaneous electromagnetic field probing system with Y-shaped separation detection structure Analysis of electrical contact characteristics of strap contacts used in high voltage bushings under eccentric conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1