利用深度学习基于心电图进行精确认证

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Computer Security Pub Date : 2024-01-16 DOI:10.3233/jcs-220137
Liping Zhang, Shukai Chen, Wei Ren, Geyong Min, K. Choo
{"title":"利用深度学习基于心电图进行精确认证","authors":"Liping Zhang, Shukai Chen, Wei Ren, Geyong Min, K. Choo","doi":"10.3233/jcs-220137","DOIUrl":null,"url":null,"abstract":"Biometric-based authentication methods have been widely used, for example on portable devices (e.g., Android and iOS devices). However, there are several known limitations in existing authentication methods based on biometrics (e.g., those using facial, iris, and fingerprint). For example, in a healthcare context, a user may be physically incapable of completing the authentication due to his/her medical conditions. Hence, as a complementary authentication mechanism, there have been attempts to also utilize electrocardiogram (ECG). In this work, we propose an ECG authentication system that leverages deep learning. Specifically, to achieve generalization ability, complementary ensemble empirical decomposition (CEEMD) is introduced in our design. Moreover, a 1-D Multi-scale Convolutional Neural Network (1-D MCNN) is implemented to achieve accurate authentication. To evaluate the usability of our proposed approach, we have performed extensive experiments on eight databases, and the findings show that our proposed approach achieves good performance even on abnormal databases and can be adapted for different application environments. In addition, our adopted data from eight public databases requires theoretical statistical treatment for practical applications in real authentication scenarios.","PeriodicalId":46074,"journal":{"name":"Journal of Computer Security","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate authentication based on ECG using deep learning\",\"authors\":\"Liping Zhang, Shukai Chen, Wei Ren, Geyong Min, K. Choo\",\"doi\":\"10.3233/jcs-220137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric-based authentication methods have been widely used, for example on portable devices (e.g., Android and iOS devices). However, there are several known limitations in existing authentication methods based on biometrics (e.g., those using facial, iris, and fingerprint). For example, in a healthcare context, a user may be physically incapable of completing the authentication due to his/her medical conditions. Hence, as a complementary authentication mechanism, there have been attempts to also utilize electrocardiogram (ECG). In this work, we propose an ECG authentication system that leverages deep learning. Specifically, to achieve generalization ability, complementary ensemble empirical decomposition (CEEMD) is introduced in our design. Moreover, a 1-D Multi-scale Convolutional Neural Network (1-D MCNN) is implemented to achieve accurate authentication. To evaluate the usability of our proposed approach, we have performed extensive experiments on eight databases, and the findings show that our proposed approach achieves good performance even on abnormal databases and can be adapted for different application environments. In addition, our adopted data from eight public databases requires theoretical statistical treatment for practical applications in real authentication scenarios.\",\"PeriodicalId\":46074,\"journal\":{\"name\":\"Journal of Computer Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcs-220137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-220137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于生物识别的身份验证方法已被广泛使用,例如在便携式设备(如安卓和 iOS 设备)上。然而,现有的基于生物识别的身份验证方法(如使用面部、虹膜和指纹的方法)存在一些已知的局限性。例如,在医疗保健领域,用户可能会因为身体状况而无法完成身份验证。因此,作为一种补充认证机制,也有人尝试利用心电图(ECG)。在这项工作中,我们提出了一种利用深度学习的心电图身份验证系统。具体来说,为了实现泛化能力,我们在设计中引入了互补集合经验分解(CEEMD)。此外,我们还采用了一维多尺度卷积神经网络(1-D MCNN)来实现准确的身份验证。为了评估我们提出的方法的可用性,我们在八个数据库上进行了广泛的实验,结果表明我们提出的方法即使在异常数据库上也能实现良好的性能,并能适用于不同的应用环境。此外,我们采用的八个公共数据库的数据需要进行理论统计处理,以便在实际认证场景中进行实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate authentication based on ECG using deep learning
Biometric-based authentication methods have been widely used, for example on portable devices (e.g., Android and iOS devices). However, there are several known limitations in existing authentication methods based on biometrics (e.g., those using facial, iris, and fingerprint). For example, in a healthcare context, a user may be physically incapable of completing the authentication due to his/her medical conditions. Hence, as a complementary authentication mechanism, there have been attempts to also utilize electrocardiogram (ECG). In this work, we propose an ECG authentication system that leverages deep learning. Specifically, to achieve generalization ability, complementary ensemble empirical decomposition (CEEMD) is introduced in our design. Moreover, a 1-D Multi-scale Convolutional Neural Network (1-D MCNN) is implemented to achieve accurate authentication. To evaluate the usability of our proposed approach, we have performed extensive experiments on eight databases, and the findings show that our proposed approach achieves good performance even on abnormal databases and can be adapted for different application environments. In addition, our adopted data from eight public databases requires theoretical statistical treatment for practical applications in real authentication scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Security
Journal of Computer Security COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.70
自引率
0.00%
发文量
35
期刊介绍: The Journal of Computer Security presents research and development results of lasting significance in the theory, design, implementation, analysis, and application of secure computer systems and networks. It will also provide a forum for ideas about the meaning and implications of security and privacy, particularly those with important consequences for the technical community. The Journal provides an opportunity to publish articles of greater depth and length than is possible in the proceedings of various existing conferences, while addressing an audience of researchers in computer security who can be assumed to have a more specialized background than the readership of other archival publications.
期刊最新文献
Adaptive multi-cascaded ResNet-based efficient multimedia steganography framework using hybrid mouth brooding fish-emperor penguin optimization mechanism Securing Images using Bifid Cipher associated with Arnold Map Identity-based chameleon hash from lattices Practical multi-party private set intersection cardinality and intersection-sum protocols under arbitrary collusion1 MVDet: Encrypted malware traffic detection via multi-view analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1