空心固定叶片外表面水膜三维流动的数值研究

Yang Chen, Yujuan Zhao, Xiaodan Zhang, Yanhao Cao, Liangmou Li
{"title":"空心固定叶片外表面水膜三维流动的数值研究","authors":"Yang Chen, Yujuan Zhao, Xiaodan Zhang, Yanhao Cao, Liangmou Li","doi":"10.1177/09576509241227479","DOIUrl":null,"url":null,"abstract":"In order to figure out the influence of water film on the performance of the turbomachinery, understand the mechanism of the interaction between the high-speed airflow and the water film in turbomachinery, and provide a reference for the design of the subsequent experiments and hollow stationary blade water removal by heating. The commercial software FLUENT with the Eulerian Wall Films model is used to establish a solution method for simulating the flow of water film on the blade. The accuracy of the solution method is verified by comparing it with the results of the water film thickness experiment on the surface of the plate. The distribution of the water film on the outer surface of the vane as well as the influence of the water film on the mainstream field are numerically studied in the condition of the wet steam mainstream. The results show that the gradient of water film thickness on the pressure surface is relatively gentle and is along the radial direction. The gradient of water film thickness on the suction side is along the axial direction, and the value is larger; There is a V-shaped water film agglomeration area on the suction surface near the trailing edge where the water film thickness is greater than 45.7 μm; The top areas on both the suction side and pressure side produce a local water film agglomeration area with the dual effect of the secondary flow and the centrifugal force of the mainstream; The water film flow on the blade surface has little influence of the steam velocity and the speed of the mainstream. The increase of local pressure on the surface leads to an increase in the pressure of the adjacent mainstream areas.","PeriodicalId":509769,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on the three-dimensional flow of water film on the outer surface of the hollow stationary blade\",\"authors\":\"Yang Chen, Yujuan Zhao, Xiaodan Zhang, Yanhao Cao, Liangmou Li\",\"doi\":\"10.1177/09576509241227479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to figure out the influence of water film on the performance of the turbomachinery, understand the mechanism of the interaction between the high-speed airflow and the water film in turbomachinery, and provide a reference for the design of the subsequent experiments and hollow stationary blade water removal by heating. The commercial software FLUENT with the Eulerian Wall Films model is used to establish a solution method for simulating the flow of water film on the blade. The accuracy of the solution method is verified by comparing it with the results of the water film thickness experiment on the surface of the plate. The distribution of the water film on the outer surface of the vane as well as the influence of the water film on the mainstream field are numerically studied in the condition of the wet steam mainstream. The results show that the gradient of water film thickness on the pressure surface is relatively gentle and is along the radial direction. The gradient of water film thickness on the suction side is along the axial direction, and the value is larger; There is a V-shaped water film agglomeration area on the suction surface near the trailing edge where the water film thickness is greater than 45.7 μm; The top areas on both the suction side and pressure side produce a local water film agglomeration area with the dual effect of the secondary flow and the centrifugal force of the mainstream; The water film flow on the blade surface has little influence of the steam velocity and the speed of the mainstream. The increase of local pressure on the surface leads to an increase in the pressure of the adjacent mainstream areas.\",\"PeriodicalId\":509769,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509241227479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09576509241227479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了弄清水膜对透平机械性能的影响,了解透平机械中高速气流与水膜相互作用的机理,为后续实验设计和空心静止叶片加热除水提供参考。利用商业软件 FLUENT 的欧拉壁膜模型,建立了模拟叶片上水膜流动的求解方法。通过与叶片表面水膜厚度实验结果进行比较,验证了求解方法的准确性。在湿蒸汽主流条件下,对叶片外表面水膜的分布以及水膜对主流场的影响进行了数值研究。结果表明,压力面上的水膜厚度梯度相对平缓,且沿径向分布。吸气面上的水膜厚度梯度沿轴向,且数值较大;吸气面上靠近后缘处有一个水膜厚度大于 45.7 μm 的 V 形水膜聚集区;吸气面和受压面的顶部区域在二次流和主流离心力的双重作用下产生了局部水膜聚集区;叶片表面的水膜流对蒸汽速度和主流速度的影响较小。表面局部压力的增加会导致相邻主流区域压力的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study on the three-dimensional flow of water film on the outer surface of the hollow stationary blade
In order to figure out the influence of water film on the performance of the turbomachinery, understand the mechanism of the interaction between the high-speed airflow and the water film in turbomachinery, and provide a reference for the design of the subsequent experiments and hollow stationary blade water removal by heating. The commercial software FLUENT with the Eulerian Wall Films model is used to establish a solution method for simulating the flow of water film on the blade. The accuracy of the solution method is verified by comparing it with the results of the water film thickness experiment on the surface of the plate. The distribution of the water film on the outer surface of the vane as well as the influence of the water film on the mainstream field are numerically studied in the condition of the wet steam mainstream. The results show that the gradient of water film thickness on the pressure surface is relatively gentle and is along the radial direction. The gradient of water film thickness on the suction side is along the axial direction, and the value is larger; There is a V-shaped water film agglomeration area on the suction surface near the trailing edge where the water film thickness is greater than 45.7 μm; The top areas on both the suction side and pressure side produce a local water film agglomeration area with the dual effect of the secondary flow and the centrifugal force of the mainstream; The water film flow on the blade surface has little influence of the steam velocity and the speed of the mainstream. The increase of local pressure on the surface leads to an increase in the pressure of the adjacent mainstream areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic coupling effects of injection on spray and mixture formation in an asymmetrically vibrating combustion engine Thermal performance of three concentrating collectors with bifacial PV cells. Part II – parametrical study Thermal performance of three concentrating collectors with bifacial PV cells. Part II – parametrical study Design improvement for suction shape in rotary compressor Design improvement for suction shape in rotary compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1