动态模型在预测美国总人口中的应用

Hongyi Li
{"title":"动态模型在预测美国总人口中的应用","authors":"Hongyi Li","doi":"10.54254/2753-8818/30/20241028","DOIUrl":null,"url":null,"abstract":"Dynamic models have been widely cited in predicting criminal population, residential electricity consumption, food prices and other objects. However, for total population predictions, dynamic models are rarely used. In this study, we will analyse the relationship between 13 variables such as CPI, grain prices, and medical expenditures and the total population of the United States, then combine it with the ARIMA model to generate a time series dynamic regression model. The conclusion is that, according to the parameters of the final model, two predictors (CPI and the number of crimes) and one interaction term (the product of the poverty rate and unemployment rate) are significantly related to changes in the population. Ultimately, the model performed well on the test set and was remarkably accurate for population prediction five years later. This report screens various factors influencing the total population and provides a broader background for applying dynamic models. In addition, this study also provides directions for subsequent research on more efficient dynamic models.","PeriodicalId":489336,"journal":{"name":"Theoretical and Natural Science","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of dynamic models in forecasting the total population of the United States\",\"authors\":\"Hongyi Li\",\"doi\":\"10.54254/2753-8818/30/20241028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic models have been widely cited in predicting criminal population, residential electricity consumption, food prices and other objects. However, for total population predictions, dynamic models are rarely used. In this study, we will analyse the relationship between 13 variables such as CPI, grain prices, and medical expenditures and the total population of the United States, then combine it with the ARIMA model to generate a time series dynamic regression model. The conclusion is that, according to the parameters of the final model, two predictors (CPI and the number of crimes) and one interaction term (the product of the poverty rate and unemployment rate) are significantly related to changes in the population. Ultimately, the model performed well on the test set and was remarkably accurate for population prediction five years later. This report screens various factors influencing the total population and provides a broader background for applying dynamic models. In addition, this study also provides directions for subsequent research on more efficient dynamic models.\",\"PeriodicalId\":489336,\"journal\":{\"name\":\"Theoretical and Natural Science\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Natural Science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54254/2753-8818/30/20241028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54254/2753-8818/30/20241028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态模型在预测犯罪人口、居民用电量、食品价格和其他对象方面被广泛引用。然而,在预测人口总数时,动态模型却很少被使用。在本研究中,我们将分析 CPI、粮食价格、医疗支出等 13 个变量与美国总人口之间的关系,然后结合 ARIMA 模型生成时间序列动态回归模型。结论是,根据最终模型的参数,两个预测项(CPI 和犯罪数量)和一个交互项(贫困率和失业率的乘积)与人口的变化有显著的关系。最终,该模型在测试集上表现良好,对五年后的人口预测非常准确。本报告筛选了影响总人口的各种因素,为应用动态模型提供了更广泛的背景。此外,本研究还为后续研究更有效的动态模型提供了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of dynamic models in forecasting the total population of the United States
Dynamic models have been widely cited in predicting criminal population, residential electricity consumption, food prices and other objects. However, for total population predictions, dynamic models are rarely used. In this study, we will analyse the relationship between 13 variables such as CPI, grain prices, and medical expenditures and the total population of the United States, then combine it with the ARIMA model to generate a time series dynamic regression model. The conclusion is that, according to the parameters of the final model, two predictors (CPI and the number of crimes) and one interaction term (the product of the poverty rate and unemployment rate) are significantly related to changes in the population. Ultimately, the model performed well on the test set and was remarkably accurate for population prediction five years later. This report screens various factors influencing the total population and provides a broader background for applying dynamic models. In addition, this study also provides directions for subsequent research on more efficient dynamic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Road dynamic landscape design and simulation based on fuzzy clustering algorithm Quantum physics: A better model to understand consciousness-related brain functions Automatic pricing and replenishment decision-making for vegetable products based on optimization models Parking recommendation with meta-heuristic algorithms Order-six complex hadamard matrices constructed by Schmidt rank and partial transpose in operator algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1