{"title":"铜对激光熔覆制备的 Co2CrFeNiMnCux 高熵合金镀层微观结构和性能的影响","authors":"Pingjiu Hu, Qingjun Zhu, Zhongbo Peng, Jizhou Duan","doi":"10.1177/02670844231216902","DOIUrl":null,"url":null,"abstract":"High-entropy alloy coatings (HEACs) of Co2CrFeNiMnCu x ( x = 0, 0.25, 0.5, 0.75, 1.0, 1.25) were fabricated on Q235 steel surfaces by laser cladding. A portion of the HEACs ( x = 0, 0.5 and 1.25) displayed a dual-phase FCC structure, while the remaining portion ( x = 0.25, 0.75 and 1.0) exhibited a single-phase FCC structure. Furthermore, as the Cu content increased, the grain size of the coatings became finer and elongated. Due to the unique processing technology of laser cladding, the HEACs exhibited a hardness gradient from the top to the substrates. Cu segregated within the crystal and accumulated near the grain boundaries. The primary mechanism for protecting the steel substrate through coatings was passive films protection. Remarkably, the coatings demonstrated better anti-corrosion properties when the Cu content was 0.25, with a charge transfer resistance of 9.528 × 104 Ω cm2, corrosion potential of −0.387 V and corrosion current density of 3.125 × 10−7 A/cm2.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cu on microstructure and properties of Co2CrFeNiMnCux high-entropy alloy coatings prepared by laser cladding\",\"authors\":\"Pingjiu Hu, Qingjun Zhu, Zhongbo Peng, Jizhou Duan\",\"doi\":\"10.1177/02670844231216902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-entropy alloy coatings (HEACs) of Co2CrFeNiMnCu x ( x = 0, 0.25, 0.5, 0.75, 1.0, 1.25) were fabricated on Q235 steel surfaces by laser cladding. A portion of the HEACs ( x = 0, 0.5 and 1.25) displayed a dual-phase FCC structure, while the remaining portion ( x = 0.25, 0.75 and 1.0) exhibited a single-phase FCC structure. Furthermore, as the Cu content increased, the grain size of the coatings became finer and elongated. Due to the unique processing technology of laser cladding, the HEACs exhibited a hardness gradient from the top to the substrates. Cu segregated within the crystal and accumulated near the grain boundaries. The primary mechanism for protecting the steel substrate through coatings was passive films protection. Remarkably, the coatings demonstrated better anti-corrosion properties when the Cu content was 0.25, with a charge transfer resistance of 9.528 × 104 Ω cm2, corrosion potential of −0.387 V and corrosion current density of 3.125 × 10−7 A/cm2.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/02670844231216902\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/02670844231216902","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Effect of Cu on microstructure and properties of Co2CrFeNiMnCux high-entropy alloy coatings prepared by laser cladding
High-entropy alloy coatings (HEACs) of Co2CrFeNiMnCu x ( x = 0, 0.25, 0.5, 0.75, 1.0, 1.25) were fabricated on Q235 steel surfaces by laser cladding. A portion of the HEACs ( x = 0, 0.5 and 1.25) displayed a dual-phase FCC structure, while the remaining portion ( x = 0.25, 0.75 and 1.0) exhibited a single-phase FCC structure. Furthermore, as the Cu content increased, the grain size of the coatings became finer and elongated. Due to the unique processing technology of laser cladding, the HEACs exhibited a hardness gradient from the top to the substrates. Cu segregated within the crystal and accumulated near the grain boundaries. The primary mechanism for protecting the steel substrate through coatings was passive films protection. Remarkably, the coatings demonstrated better anti-corrosion properties when the Cu content was 0.25, with a charge transfer resistance of 9.528 × 104 Ω cm2, corrosion potential of −0.387 V and corrosion current density of 3.125 × 10−7 A/cm2.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.