移动楔上自相似热边界层流动的精确和解析解

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-01-14 DOI:10.1002/htj.23003
Shreenivas R. Kirsur, Shrivatsa R. Joshi
{"title":"移动楔上自相似热边界层流动的精确和解析解","authors":"Shreenivas R. Kirsur,&nbsp;Shrivatsa R. Joshi","doi":"10.1002/htj.23003","DOIUrl":null,"url":null,"abstract":"<p>This article aims to achieve exact and analytical solutions for the classical Falkner–Skan equation with heat transfer (FSE-HT). Specifically, when the pressure gradient parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n \n <mo>=</mo>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\beta =-1$</annotation>\n </semantics></math>, there already exists a closed-form solution in the literature for the Falkner–Skan flow equation. The main purpose here is to extend this case to obtain a closed-form solution to the heat transport equation with the solubility condition <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n \n <mi>r</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $Pr=1$</annotation>\n </semantics></math>. An algorithm is presented and is found to be new to the literature that enriches the physical properties of FSE-HT. It is shown that for the moving wedge parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n \n <mo>&gt;</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\lambda \\gt 1$</annotation>\n </semantics></math>, the momentum and temperature equations show multiple solutions analytically. The skin friction coefficient and the heat transfer rate are also obtained in analytical form. The thus-obtained solution is then adapted to derive an analytical solution applicable to a wide range of pressure gradient parameters <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation> $\\beta $</annotation>\n </semantics></math> and Prandtl numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n \n <mi>r</mi>\n </mrow>\n <annotation> $Pr$</annotation>\n </semantics></math>. Furthermore, an asymptotic analysis is conducted, focusing on scenarios where the moving wedge parameter becomes significantly large (<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n \n <mo>→</mo>\n \n <mi>∞</mi>\n </mrow>\n <annotation> $\\lambda \\to \\infty $</annotation>\n </semantics></math>). Nevertheless, in all the above-mentioned cases, the skin friction coefficient (<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n \n <mo>″</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mn>0</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f^{\\prime\\prime} (0)$</annotation>\n </semantics></math>) and the heat transfer rate (<span></span><math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n \n <mo>′</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mn>0</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\theta ^{\\prime} (0)$</annotation>\n </semantics></math>) are compared with the direct numerical solutions of the boundary layer equations, and it is found that the results are in good agreement. These solutions provide a benchmark and shed light on further studies on the families of FSE-HT.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact and analytical solutions for self-similar thermal boundary layer flows over a moving wedge\",\"authors\":\"Shreenivas R. Kirsur,&nbsp;Shrivatsa R. Joshi\",\"doi\":\"10.1002/htj.23003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article aims to achieve exact and analytical solutions for the classical Falkner–Skan equation with heat transfer (FSE-HT). Specifically, when the pressure gradient parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n \\n <mo>=</mo>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\beta =-1$</annotation>\\n </semantics></math>, there already exists a closed-form solution in the literature for the Falkner–Skan flow equation. The main purpose here is to extend this case to obtain a closed-form solution to the heat transport equation with the solubility condition <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n \\n <mi>r</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $Pr=1$</annotation>\\n </semantics></math>. An algorithm is presented and is found to be new to the literature that enriches the physical properties of FSE-HT. It is shown that for the moving wedge parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\lambda \\\\gt 1$</annotation>\\n </semantics></math>, the momentum and temperature equations show multiple solutions analytically. The skin friction coefficient and the heat transfer rate are also obtained in analytical form. The thus-obtained solution is then adapted to derive an analytical solution applicable to a wide range of pressure gradient parameters <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <annotation> $\\\\beta $</annotation>\\n </semantics></math> and Prandtl numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n \\n <mi>r</mi>\\n </mrow>\\n <annotation> $Pr$</annotation>\\n </semantics></math>. Furthermore, an asymptotic analysis is conducted, focusing on scenarios where the moving wedge parameter becomes significantly large (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n \\n <mo>→</mo>\\n \\n <mi>∞</mi>\\n </mrow>\\n <annotation> $\\\\lambda \\\\to \\\\infty $</annotation>\\n </semantics></math>). Nevertheless, in all the above-mentioned cases, the skin friction coefficient (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n \\n <mo>″</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>0</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f^{\\\\prime\\\\prime} (0)$</annotation>\\n </semantics></math>) and the heat transfer rate (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>θ</mi>\\n \\n <mo>′</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>0</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\theta ^{\\\\prime} (0)$</annotation>\\n </semantics></math>) are compared with the direct numerical solutions of the boundary layer equations, and it is found that the results are in good agreement. These solutions provide a benchmark and shed light on further studies on the families of FSE-HT.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在实现经典的福克纳-斯坎传热方程(FSE-HT)的精确解析解。具体来说,当压力梯度参数为Ⅴ时,文献中已经存在 Falkner-Skan 流动方程的闭式解。本文的主要目的是扩展这种情况,以获得具有溶解度条件的热传递方程的闭式解。本文介绍了一种算法,发现这种算法是文献中的新算法,它丰富了 FSE-HT 的物理特性。研究表明,对于移动楔参数,动量方程和温度方程显示出多种解析解。表皮摩擦系数和传热速率也以解析形式得到。由此获得的解法可用于推导适用于各种压力梯度参数和普朗特数的解析解。此外,还进行了渐近分析,重点是移动楔形参数显著变大的情况()。然而,在上述所有情况下,皮肤摩擦系数()和传热速率()都与边界层方程的直接数值解进行了比较,发现结果非常一致。这些解法为进一步研究 FSE-HT 系列提供了基准和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact and analytical solutions for self-similar thermal boundary layer flows over a moving wedge

This article aims to achieve exact and analytical solutions for the classical Falkner–Skan equation with heat transfer (FSE-HT). Specifically, when the pressure gradient parameter β = 1 $\beta =-1$ , there already exists a closed-form solution in the literature for the Falkner–Skan flow equation. The main purpose here is to extend this case to obtain a closed-form solution to the heat transport equation with the solubility condition P r = 1 $Pr=1$ . An algorithm is presented and is found to be new to the literature that enriches the physical properties of FSE-HT. It is shown that for the moving wedge parameter λ > 1 $\lambda \gt 1$ , the momentum and temperature equations show multiple solutions analytically. The skin friction coefficient and the heat transfer rate are also obtained in analytical form. The thus-obtained solution is then adapted to derive an analytical solution applicable to a wide range of pressure gradient parameters β $\beta $ and Prandtl numbers P r $Pr$ . Furthermore, an asymptotic analysis is conducted, focusing on scenarios where the moving wedge parameter becomes significantly large ( λ $\lambda \to \infty $ ). Nevertheless, in all the above-mentioned cases, the skin friction coefficient ( f ( 0 ) $f^{\prime\prime} (0)$ ) and the heat transfer rate ( θ ( 0 ) $\theta ^{\prime} (0)$ ) are compared with the direct numerical solutions of the boundary layer equations, and it is found that the results are in good agreement. These solutions provide a benchmark and shed light on further studies on the families of FSE-HT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Characteristics of thermo‐hydraulic flow inside corrugated channels: Comprehensive and comparative review Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction A comparison between Hankel and Fourier methods for photothermal radiometry analysis Recent advancements in flow control using plasma actuators and plasma vortex generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1