M. L. Gothe, Adolfo L. Figueredo, Laís R. Borges, Ruben Ramos, A. F. Peixoto, P. Vidinha
{"title":"高压氢化:从二氧化碳高效生产甲烷的途径","authors":"M. L. Gothe, Adolfo L. Figueredo, Laís R. Borges, Ruben Ramos, A. F. Peixoto, P. Vidinha","doi":"10.3390/methane3010004","DOIUrl":null,"url":null,"abstract":"Methane has a rather relevant role in the “Power-to-Gas” concept, which is central in the current paradigm of climate change and renewable energies. Methane, the main component of natural gas, can be produced by catalytic hydrogenation reactions, particularly of CO2. A very effective catalyst in this reaction, hydrotalcite-derived nickel nanoparticles supported on alumina, Ni/Al2O3-HTC, can be employed in a high-pressure flow reactor to convert CO2 and H2 into CH4 at 100% selectivity and 84% conversion, whereas at atmospheric pressure, methane can be obtained with up to 90% selectivity. The high-pressure aspect also allows fast-paced production—over 5 m3·h−1·kgcat−1 of CH4 can be generated.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Pressure Hydrogenation: A Path to Efficient Methane Production from CO2\",\"authors\":\"M. L. Gothe, Adolfo L. Figueredo, Laís R. Borges, Ruben Ramos, A. F. Peixoto, P. Vidinha\",\"doi\":\"10.3390/methane3010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methane has a rather relevant role in the “Power-to-Gas” concept, which is central in the current paradigm of climate change and renewable energies. Methane, the main component of natural gas, can be produced by catalytic hydrogenation reactions, particularly of CO2. A very effective catalyst in this reaction, hydrotalcite-derived nickel nanoparticles supported on alumina, Ni/Al2O3-HTC, can be employed in a high-pressure flow reactor to convert CO2 and H2 into CH4 at 100% selectivity and 84% conversion, whereas at atmospheric pressure, methane can be obtained with up to 90% selectivity. The high-pressure aspect also allows fast-paced production—over 5 m3·h−1·kgcat−1 of CH4 can be generated.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane3010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane3010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Pressure Hydrogenation: A Path to Efficient Methane Production from CO2
Methane has a rather relevant role in the “Power-to-Gas” concept, which is central in the current paradigm of climate change and renewable energies. Methane, the main component of natural gas, can be produced by catalytic hydrogenation reactions, particularly of CO2. A very effective catalyst in this reaction, hydrotalcite-derived nickel nanoparticles supported on alumina, Ni/Al2O3-HTC, can be employed in a high-pressure flow reactor to convert CO2 and H2 into CH4 at 100% selectivity and 84% conversion, whereas at atmospheric pressure, methane can be obtained with up to 90% selectivity. The high-pressure aspect also allows fast-paced production—over 5 m3·h−1·kgcat−1 of CH4 can be generated.