量化解释北海道田鼠种群时间泰勒定律斜率的因素

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-11 DOI:10.1002/1438-390x.12176
Takashi Saitoh, Joel E. Cohen
{"title":"量化解释北海道田鼠种群时间泰勒定律斜率的因素","authors":"Takashi Saitoh, Joel E. Cohen","doi":"10.1002/1438-390x.12176","DOIUrl":null,"url":null,"abstract":"Taylor's law (TL) describes the relationship between the variance and mean of population density: log10(variance) ≈ log10(a) + b × log10(mean), a > 0. This study analyzed the temporal TL, for which mean and variance are calculated over time, separately for each population in a collection of populations, considering the effects of the parameters of the Gompertz model (a second‐order autoregressive time‐series model) and the skewness of the density frequency distribution. Time series of 162 populations of the gray‐sided vole in Hokkaido, Japan, spanning 23–31 years, satisfied the temporal TL: log10(variancej) ≈ 0.199 + 1.687 × log10(meanj). This model explained 62% of the variation of log10(variancej). An extended model with explanatory variables log10(meanj), the density‐dependent coefficient for 1‐year lag (α1,j), that for 2‐year lag (α2,j), the density‐independent variability (σj2), and the skewness (γj), explained 93.9% of the log10(variancej) variation. In the extended model, the coefficient of log10(meanj) was 1.949, close to the null value (b = 2) of the TL slope. The standardized partial regression coefficients indicated that density‐independent effects (σj2 and γj) dominated density‐dependent effects (α1,j and α2,j) apart from log10(meanj). The negative correlations observed between σj2 and log10(meanj), and between γj and log10(meanj), played an essential role in explaining the difference between the estimated slope of TL (b = 1.687) and the null slope (b = 2). The effects of those explanatory variables on log10(variancej) were interpreted based on the theory of a second‐order autoregressive time‐series model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying factors that explain the slopes of the temporal Taylor's law of Hokkaido vole populations\",\"authors\":\"Takashi Saitoh, Joel E. Cohen\",\"doi\":\"10.1002/1438-390x.12176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taylor's law (TL) describes the relationship between the variance and mean of population density: log10(variance) ≈ log10(a) + b × log10(mean), a > 0. This study analyzed the temporal TL, for which mean and variance are calculated over time, separately for each population in a collection of populations, considering the effects of the parameters of the Gompertz model (a second‐order autoregressive time‐series model) and the skewness of the density frequency distribution. Time series of 162 populations of the gray‐sided vole in Hokkaido, Japan, spanning 23–31 years, satisfied the temporal TL: log10(variancej) ≈ 0.199 + 1.687 × log10(meanj). This model explained 62% of the variation of log10(variancej). An extended model with explanatory variables log10(meanj), the density‐dependent coefficient for 1‐year lag (α1,j), that for 2‐year lag (α2,j), the density‐independent variability (σj2), and the skewness (γj), explained 93.9% of the log10(variancej) variation. In the extended model, the coefficient of log10(meanj) was 1.949, close to the null value (b = 2) of the TL slope. The standardized partial regression coefficients indicated that density‐independent effects (σj2 and γj) dominated density‐dependent effects (α1,j and α2,j) apart from log10(meanj). The negative correlations observed between σj2 and log10(meanj), and between γj and log10(meanj), played an essential role in explaining the difference between the estimated slope of TL (b = 1.687) and the null slope (b = 2). The effects of those explanatory variables on log10(variancej) were interpreted based on the theory of a second‐order autoregressive time‐series model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/1438-390x.12176\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/1438-390x.12176","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

泰勒定律(TL)描述了种群密度的方差和均值之间的关系:log10(方差)≈ log10(a)+ b ×log10(均值),a > 0。本研究对时间 TL 进行了分析,对种群集合中的每个种群分别计算了随时间变化的平均值和方差,并考虑了 Gompertz 模型(二阶自回归时间序列模型)参数和密度频率分布偏度的影响。日本北海道 162 个灰面田鼠种群的时间序列跨度为 23-31 年,符合时间 TL:log10(方差j)≈ 0.199 + 1.687 × log10(均值j)。该模型解释了 log10(方差j)变异的 62%。包含解释变量 log10(meanj)、与密度相关的滞后 1 年系数 (α1,j)、滞后 2 年系数 (α2,j)、与密度无关的变异性 (σj2) 和偏度 (γj)的扩展模型解释了 log10(variancej)变异的 93.9%。在扩展模型中,log10(meanj)系数为 1.949,接近 TL 斜坡的空值(b = 2)。标准化的部分回归系数表明,除 log10(meanj)外,与密度无关的效应(σj2 和 γj)主导与密度有关的效应(α1,j 和 α2,j)。在 σj2 与 log10(meanj)之间以及 γj 与 log10(meanj)之间观察到的负相关在解释 TL 估计斜率(b = 1.687)与无效斜率(b = 2)之间的差异方面发挥了重要作用。这些解释变量对 log10(方差j)的影响是根据二阶自回归时间序列模型理论解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying factors that explain the slopes of the temporal Taylor's law of Hokkaido vole populations
Taylor's law (TL) describes the relationship between the variance and mean of population density: log10(variance) ≈ log10(a) + b × log10(mean), a > 0. This study analyzed the temporal TL, for which mean and variance are calculated over time, separately for each population in a collection of populations, considering the effects of the parameters of the Gompertz model (a second‐order autoregressive time‐series model) and the skewness of the density frequency distribution. Time series of 162 populations of the gray‐sided vole in Hokkaido, Japan, spanning 23–31 years, satisfied the temporal TL: log10(variancej) ≈ 0.199 + 1.687 × log10(meanj). This model explained 62% of the variation of log10(variancej). An extended model with explanatory variables log10(meanj), the density‐dependent coefficient for 1‐year lag (α1,j), that for 2‐year lag (α2,j), the density‐independent variability (σj2), and the skewness (γj), explained 93.9% of the log10(variancej) variation. In the extended model, the coefficient of log10(meanj) was 1.949, close to the null value (b = 2) of the TL slope. The standardized partial regression coefficients indicated that density‐independent effects (σj2 and γj) dominated density‐dependent effects (α1,j and α2,j) apart from log10(meanj). The negative correlations observed between σj2 and log10(meanj), and between γj and log10(meanj), played an essential role in explaining the difference between the estimated slope of TL (b = 1.687) and the null slope (b = 2). The effects of those explanatory variables on log10(variancej) were interpreted based on the theory of a second‐order autoregressive time‐series model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1