基于标准模型晶格的 SNARK 的量子忽略 LWE 采样和不安全性

Thomas Debris-Alazard, Pouria Fallahpour, Damien Stehl'e
{"title":"基于标准模型晶格的 SNARK 的量子忽略 LWE 采样和不安全性","authors":"Thomas Debris-Alazard, Pouria Fallahpour, Damien Stehl'e","doi":"10.48550/arXiv.2401.03807","DOIUrl":null,"url":null,"abstract":"The Learning With Errors ($\\mathsf{LWE}$) problem asks to find $\\mathbf{s}$ from an input of the form $(\\mathbf{A}, \\mathbf{b} = \\mathbf{A}\\mathbf{s}+\\mathbf{e}) \\in (\\mathbb{Z}/q\\mathbb{Z})^{m \\times n} \\times (\\mathbb{Z}/q\\mathbb{Z})^{m}$, for a vector $\\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed is to first create $\\mathbf{s}$ and $\\mathbf{e}$ and then set $\\mathbf{b} = \\mathbf{A}\\mathbf{s}+\\mathbf{e}$. In particular, such an instance sampler knows the solution. This raises the question whether it is possible to obliviously sample $(\\mathbf{A}, \\mathbf{A}\\mathbf{s}+\\mathbf{e})$, namely, without knowing the underlying $\\mathbf{s}$. A variant of the assumption that oblivious $\\mathsf{LWE}$ sampling is hard has been used in a series of works constructing Succinct Non-interactive Arguments of Knowledge (SNARKs) in the standard model. As the assumption is related to $\\mathsf{LWE}$, these SNARKs have been conjectured to be secure in the presence of quantum adversaries. Our main result is a quantum polynomial-time algorithm that samples well-distributed $\\mathsf{LWE}$ instances while provably not knowing the solution, under the assumption that $\\mathsf{LWE}$ is hard. Moreover, the approach works for a vast range of $\\mathsf{LWE}$ parametrizations, including those used in the above-mentioned SNARKs.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"120 3","pages":"30"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Oblivious LWE Sampling and Insecurity of Standard Model Lattice-Based SNARKs\",\"authors\":\"Thomas Debris-Alazard, Pouria Fallahpour, Damien Stehl'e\",\"doi\":\"10.48550/arXiv.2401.03807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Learning With Errors ($\\\\mathsf{LWE}$) problem asks to find $\\\\mathbf{s}$ from an input of the form $(\\\\mathbf{A}, \\\\mathbf{b} = \\\\mathbf{A}\\\\mathbf{s}+\\\\mathbf{e}) \\\\in (\\\\mathbb{Z}/q\\\\mathbb{Z})^{m \\\\times n} \\\\times (\\\\mathbb{Z}/q\\\\mathbb{Z})^{m}$, for a vector $\\\\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\\\\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed is to first create $\\\\mathbf{s}$ and $\\\\mathbf{e}$ and then set $\\\\mathbf{b} = \\\\mathbf{A}\\\\mathbf{s}+\\\\mathbf{e}$. In particular, such an instance sampler knows the solution. This raises the question whether it is possible to obliviously sample $(\\\\mathbf{A}, \\\\mathbf{A}\\\\mathbf{s}+\\\\mathbf{e})$, namely, without knowing the underlying $\\\\mathbf{s}$. A variant of the assumption that oblivious $\\\\mathsf{LWE}$ sampling is hard has been used in a series of works constructing Succinct Non-interactive Arguments of Knowledge (SNARKs) in the standard model. As the assumption is related to $\\\\mathsf{LWE}$, these SNARKs have been conjectured to be secure in the presence of quantum adversaries. Our main result is a quantum polynomial-time algorithm that samples well-distributed $\\\\mathsf{LWE}$ instances while provably not knowing the solution, under the assumption that $\\\\mathsf{LWE}$ is hard. Moreover, the approach works for a vast range of $\\\\mathsf{LWE}$ parametrizations, including those used in the above-mentioned SNARKs.\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"120 3\",\"pages\":\"30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.03807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.03807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有错误学习($mathsf{LWE}$)问题要求从形式为$(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e})的输入中找到$\mathbf{s}$。\times(\mathbb{Z}/\qmathbb{Z})^{m}$,适用于具有小量级条目的向量 $/mathbf{e}$。在这项工作中,我们并不关注 $\mathsf{LWE}$ 的求解,而是关注实例的采样任务。由于这些实例的范围极为稀疏,因此唯一的方法似乎是首先创建 $\mathbf{s}$ 和 $\mathbf{e}$ ,然后设置 $\mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}$。特别是,这样的实例采样器知道解。这就提出了一个问题:是否有可能忘我地采样 $(\mathbf{A},\mathbf{A}\mathbf{s}+\mathbf{e})$,即不知道底层的 $\mathbf{s}$ 呢?在标准模型中构建简洁非交互知识论证(SNARKs)的一系列工作中,使用了 "遗忘$mathsf{LWE}$采样是困难的 "这一假设的变体。由于该假设与 $\mathsf{LWE}$ 有关,这些 SNARKs 被猜测为在量子对手面前是安全的。我们的主要成果是一种量子多项式时间算法,它可以在$\mathsf{LWE}$很难的假设下,对分布良好的$\mathsf{LWE}$实例进行采样,同时证明不知道解。此外,这种方法适用于大量 $mathsf{LWE}$ 参数,包括上述 SNARKs 中使用的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Oblivious LWE Sampling and Insecurity of Standard Model Lattice-Based SNARKs
The Learning With Errors ($\mathsf{LWE}$) problem asks to find $\mathbf{s}$ from an input of the form $(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}) \in (\mathbb{Z}/q\mathbb{Z})^{m \times n} \times (\mathbb{Z}/q\mathbb{Z})^{m}$, for a vector $\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed is to first create $\mathbf{s}$ and $\mathbf{e}$ and then set $\mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}$. In particular, such an instance sampler knows the solution. This raises the question whether it is possible to obliviously sample $(\mathbf{A}, \mathbf{A}\mathbf{s}+\mathbf{e})$, namely, without knowing the underlying $\mathbf{s}$. A variant of the assumption that oblivious $\mathsf{LWE}$ sampling is hard has been used in a series of works constructing Succinct Non-interactive Arguments of Knowledge (SNARKs) in the standard model. As the assumption is related to $\mathsf{LWE}$, these SNARKs have been conjectured to be secure in the presence of quantum adversaries. Our main result is a quantum polynomial-time algorithm that samples well-distributed $\mathsf{LWE}$ instances while provably not knowing the solution, under the assumption that $\mathsf{LWE}$ is hard. Moreover, the approach works for a vast range of $\mathsf{LWE}$ parametrizations, including those used in the above-mentioned SNARKs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronous Distributed Key Generation without Broadcasts Optimizing and Implementing Fischlin's Transform for UC-Secure Zero-Knowledge A Long Tweak Goes a Long Way: High Multi-user Security Authenticated Encryption from Tweakable Block Ciphers Efficient isochronous fixed-weight sampling with applications to NTRU Decentralized Multi-Client Functional Encryption with Strong Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1