机器学习分子动力学模拟中固体电解质的锂离子电导率与尺寸有关

Yixi Zhang , Jin-Da Luo , Hong-Bin Yao , Bin Jiang
{"title":"机器学习分子动力学模拟中固体电解质的锂离子电导率与尺寸有关","authors":"Yixi Zhang ,&nbsp;Jin-Da Luo ,&nbsp;Hong-Bin Yao ,&nbsp;Bin Jiang","doi":"10.1016/j.aichem.2024.100051","DOIUrl":null,"url":null,"abstract":"<div><p>Solid-state electrolytes are key ingredients in next-generation devices for energy storage and release. Machine learning molecular dynamics (MLMD) has shown great promise in studying the diffusivity of mobile ions in solid-state electrolytes, with much higher efficiency than conventional ab initio molecular dynamics (AIMD). In this work, we combine an efficient embedded atom neural network (EANN) approach and an uncertainty-driven active learning algorithm that optimally selects data points from high-temperature AIMD trajectories to construct ML potentials for solid-state electrolytes and validate this strategy in a benchmark system, Li<sub>3</sub>YCl<sub>6</sub>, for which several controversy theoretical results exist. Through systematic MLMD simulations, we find that a typically used small supercell in AIMD simulations fails to predict the supersonic transition at a critical temperature, leading to a significant overestimation of the Li<sup>+</sup> conductivity in Li<sub>3</sub>YCl<sub>6</sub> at room temperature. Fortunately, thanks to the scalability of the EANN potential, extended MLMD simulations in a sufficiently large cell does yield a notable change of temperature-dependence in conductivity at ∼420 K and a much lower room-temperature conductivity in excellent with experiment. Interestingly, our results are all based on a semi-local PBE density functional, which was argued unable to predict the superionic transition. We analyze possible reasons of the seemingly inconsistent MLMD results reported in literature with different ML potentials. This work paves the way of simply using high-temperature AIMD data to generate more reliable MLMD results of low-temperature ionic conductivities in solid-state electrolytes.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747724000095/pdfft?md5=ff9758425c151a024cd1c50e2503eb45&pid=1-s2.0-S2949747724000095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Size dependent lithium-ion conductivity of solid electrolytes in machine learning molecular dynamics simulations\",\"authors\":\"Yixi Zhang ,&nbsp;Jin-Da Luo ,&nbsp;Hong-Bin Yao ,&nbsp;Bin Jiang\",\"doi\":\"10.1016/j.aichem.2024.100051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid-state electrolytes are key ingredients in next-generation devices for energy storage and release. Machine learning molecular dynamics (MLMD) has shown great promise in studying the diffusivity of mobile ions in solid-state electrolytes, with much higher efficiency than conventional ab initio molecular dynamics (AIMD). In this work, we combine an efficient embedded atom neural network (EANN) approach and an uncertainty-driven active learning algorithm that optimally selects data points from high-temperature AIMD trajectories to construct ML potentials for solid-state electrolytes and validate this strategy in a benchmark system, Li<sub>3</sub>YCl<sub>6</sub>, for which several controversy theoretical results exist. Through systematic MLMD simulations, we find that a typically used small supercell in AIMD simulations fails to predict the supersonic transition at a critical temperature, leading to a significant overestimation of the Li<sup>+</sup> conductivity in Li<sub>3</sub>YCl<sub>6</sub> at room temperature. Fortunately, thanks to the scalability of the EANN potential, extended MLMD simulations in a sufficiently large cell does yield a notable change of temperature-dependence in conductivity at ∼420 K and a much lower room-temperature conductivity in excellent with experiment. Interestingly, our results are all based on a semi-local PBE density functional, which was argued unable to predict the superionic transition. We analyze possible reasons of the seemingly inconsistent MLMD results reported in literature with different ML potentials. This work paves the way of simply using high-temperature AIMD data to generate more reliable MLMD results of low-temperature ionic conductivities in solid-state electrolytes.</p></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949747724000095/pdfft?md5=ff9758425c151a024cd1c50e2503eb45&pid=1-s2.0-S2949747724000095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949747724000095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固态电解质是下一代能量存储和释放设备的关键成分。机器学习分子动力学(MLMD)在研究固态电解质中移动离子的扩散性方面显示出巨大前景,其效率远远高于传统的自证分子动力学(AIMD)。在这项工作中,我们结合了高效的嵌入式原子神经网络(EANN)方法和不确定性驱动的主动学习算法,从高温 AIMD 轨迹中优化选择数据点,构建固态电解质的 ML 电位,并在基准系统 Li3YCl6 中验证了这一策略。通过系统的 MLMD 模拟,我们发现 AIMD 模拟中通常使用的小型超级电池无法预测临界温度下的超音速转变,从而导致室温下 Li3YCl6 中 Li+ 的电导率被严重高估。幸运的是,得益于 EANN 电位的可扩展性,在足够大的单元中进行扩展 MLMD 模拟,在 ∼420 K 时电导率的温度依赖性发生了显著变化,室温电导率大大低于实验结果。有趣的是,我们的结果全部基于半局部 PBE 密度函数,而该函数被认为无法预测超离子转变。我们分析了文献报道的不同 ML 电位的 MLMD 结果看似不一致的可能原因。这项工作为利用高温 AIMD 数据生成固态电解质低温离子电导率的更可靠 MLMD 结果铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Size dependent lithium-ion conductivity of solid electrolytes in machine learning molecular dynamics simulations

Solid-state electrolytes are key ingredients in next-generation devices for energy storage and release. Machine learning molecular dynamics (MLMD) has shown great promise in studying the diffusivity of mobile ions in solid-state electrolytes, with much higher efficiency than conventional ab initio molecular dynamics (AIMD). In this work, we combine an efficient embedded atom neural network (EANN) approach and an uncertainty-driven active learning algorithm that optimally selects data points from high-temperature AIMD trajectories to construct ML potentials for solid-state electrolytes and validate this strategy in a benchmark system, Li3YCl6, for which several controversy theoretical results exist. Through systematic MLMD simulations, we find that a typically used small supercell in AIMD simulations fails to predict the supersonic transition at a critical temperature, leading to a significant overestimation of the Li+ conductivity in Li3YCl6 at room temperature. Fortunately, thanks to the scalability of the EANN potential, extended MLMD simulations in a sufficiently large cell does yield a notable change of temperature-dependence in conductivity at ∼420 K and a much lower room-temperature conductivity in excellent with experiment. Interestingly, our results are all based on a semi-local PBE density functional, which was argued unable to predict the superionic transition. We analyze possible reasons of the seemingly inconsistent MLMD results reported in literature with different ML potentials. This work paves the way of simply using high-temperature AIMD data to generate more reliable MLMD results of low-temperature ionic conductivities in solid-state electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Molecular similarity: Theory, applications, and perspectives Large-language models: The game-changers for materials science research Conf-GEM: A geometric information-assisted direct conformation generation model Top 20 influential AI-based technologies in chemistry User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1