{"title":"抑制双列维指数分数克尔介质中的孤子坍缩、调制不稳定性和流氓波激发","authors":"Ming Zhong, Yong Chen, Zhenya Yan, B. Malomed","doi":"10.1098/rspa.2023.0765","DOIUrl":null,"url":null,"abstract":"\n We introduce a generalized fractional nonlinear Schrödinger (FNLS) equation for the propagation of optical pulses in laser systems with two fractional-dispersion/diffraction terms, quantified by their Lévy indices,\n \n \n \n α\n \n 1\n \n \n \n \n α\n \n 2\n \n \n ∈\n (\n 1\n ,\n 2\n ]\n \n \n , and self-focusing or defocusing Kerr nonlinearity. Some fundamental solitons are obtained by means of the variational approximation, which are verified by comparison with numerical results. We find that the soliton collapse, exhibited by the one-dimensional cubic FNLS equation with only one Lévy index (LI)\n \n \n α\n =\n 1\n \n \n , can be suppressed in the two-LI FNLS system. Stability of the solitons is also explored against collisions with Gaussian pulses and adiabatic variation of the system parameters. Modulation instability (MI) of continuous waves is investigated in the two-LI system too. In particular, the MI may occur in the case of the defocusing nonlinearity when two diffraction coefficients have opposite signs. Using results for the MI, we produce first- and second-order rogue waves on top of continuous waves, for both signs of the Kerr nonlinearity.\n","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of soliton collapses, modulational instability and rogue-wave excitation in two-Lévy-index fractional Kerr media\",\"authors\":\"Ming Zhong, Yong Chen, Zhenya Yan, B. Malomed\",\"doi\":\"10.1098/rspa.2023.0765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We introduce a generalized fractional nonlinear Schrödinger (FNLS) equation for the propagation of optical pulses in laser systems with two fractional-dispersion/diffraction terms, quantified by their Lévy indices,\\n \\n \\n \\n α\\n \\n 1\\n \\n \\n \\n \\n α\\n \\n 2\\n \\n \\n ∈\\n (\\n 1\\n ,\\n 2\\n ]\\n \\n \\n , and self-focusing or defocusing Kerr nonlinearity. Some fundamental solitons are obtained by means of the variational approximation, which are verified by comparison with numerical results. We find that the soliton collapse, exhibited by the one-dimensional cubic FNLS equation with only one Lévy index (LI)\\n \\n \\n α\\n =\\n 1\\n \\n \\n , can be suppressed in the two-LI FNLS system. Stability of the solitons is also explored against collisions with Gaussian pulses and adiabatic variation of the system parameters. Modulation instability (MI) of continuous waves is investigated in the two-LI system too. In particular, the MI may occur in the case of the defocusing nonlinearity when two diffraction coefficients have opposite signs. Using results for the MI, we produce first- and second-order rogue waves on top of continuous waves, for both signs of the Kerr nonlinearity.\\n\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0765\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0765","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Suppression of soliton collapses, modulational instability and rogue-wave excitation in two-Lévy-index fractional Kerr media
We introduce a generalized fractional nonlinear Schrödinger (FNLS) equation for the propagation of optical pulses in laser systems with two fractional-dispersion/diffraction terms, quantified by their Lévy indices,
α
1
α
2
∈
(
1
,
2
]
, and self-focusing or defocusing Kerr nonlinearity. Some fundamental solitons are obtained by means of the variational approximation, which are verified by comparison with numerical results. We find that the soliton collapse, exhibited by the one-dimensional cubic FNLS equation with only one Lévy index (LI)
α
=
1
, can be suppressed in the two-LI FNLS system. Stability of the solitons is also explored against collisions with Gaussian pulses and adiabatic variation of the system parameters. Modulation instability (MI) of continuous waves is investigated in the two-LI system too. In particular, the MI may occur in the case of the defocusing nonlinearity when two diffraction coefficients have opposite signs. Using results for the MI, we produce first- and second-order rogue waves on top of continuous waves, for both signs of the Kerr nonlinearity.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.