基于 scc 网络的多层网络嵌入图案

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-06-01 DOI:10.1016/j.dcan.2024.01.002
Lu Sun , Xiaona Li , Mingyue Zhang , Liangtian Wan , Yun Lin , Xianpeng Wang , Gang Xu
{"title":"基于 scc 网络的多层网络嵌入图案","authors":"Lu Sun ,&nbsp;Xiaona Li ,&nbsp;Mingyue Zhang ,&nbsp;Liangtian Wan ,&nbsp;Yun Lin ,&nbsp;Xianpeng Wang ,&nbsp;Gang Xu","doi":"10.1016/j.dcan.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Interconnection of all things challenges the traditional communication methods, and Semantic Communication and Computing (SCC) will become new solutions. It is a challenging task to accurately detect, extract, and represent semantic information in the research of SCC-based networks. In previous research, researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification. However, the content of semantic information is quite complex. Although graph convolutional neural networks provide an effective solution for node classification tasks, due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures, the extracted feature information is subject to varying degrees of loss. Therefore, this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network. The Bidirectional Encoder Representations from Transformers (BERT) training word vector is introduced to extract the semantic features in the network, and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network. A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification. We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864824000142/pdfft?md5=126dbbe13ecc497016eed8f7a3a30a7f&pid=1-s2.0-S2352864824000142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-layer network embedding on scc-based network with motif\",\"authors\":\"Lu Sun ,&nbsp;Xiaona Li ,&nbsp;Mingyue Zhang ,&nbsp;Liangtian Wan ,&nbsp;Yun Lin ,&nbsp;Xianpeng Wang ,&nbsp;Gang Xu\",\"doi\":\"10.1016/j.dcan.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interconnection of all things challenges the traditional communication methods, and Semantic Communication and Computing (SCC) will become new solutions. It is a challenging task to accurately detect, extract, and represent semantic information in the research of SCC-based networks. In previous research, researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification. However, the content of semantic information is quite complex. Although graph convolutional neural networks provide an effective solution for node classification tasks, due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures, the extracted feature information is subject to varying degrees of loss. Therefore, this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network. The Bidirectional Encoder Representations from Transformers (BERT) training word vector is introduced to extract the semantic features in the network, and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network. A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification. We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000142/pdfft?md5=126dbbe13ecc497016eed8f7a3a30a7f&pid=1-s2.0-S2352864824000142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000142\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000142","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

万物互联对传统通信方式提出了挑战,语义通信与计算(Semantic Communication and Computing,SCC)将成为新的解决方案。在基于 SCC 的网络研究中,如何准确检测、提取和表示语义信息是一项具有挑战性的任务。在以往的研究中,研究人员通常使用卷积法提取图的特征信息,并执行相应的节点分类任务。然而,语义信息的内容相当复杂。虽然图卷积神经网络为节点分类任务提供了有效的解决方案,但由于其在表示多种关系模式方面的局限性,以及不能识别和分析高阶局部结构,提取的特征信息会受到不同程度的损失。因此,本文从单层拓扑网络扩展到多层异构拓扑网络。引入变压器双向编码器表征(BERT)训练词向量来提取网络中的语义特征,并结合网络模型表征网络的高阶局部特征模块对现有图神经网络进行改进。提出了一种基于 SCC 网络的多层网络嵌入算法,以完成端到端的节点分类任务。我们在一个真实的多层异构网络上验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-layer network embedding on scc-based network with motif

Interconnection of all things challenges the traditional communication methods, and Semantic Communication and Computing (SCC) will become new solutions. It is a challenging task to accurately detect, extract, and represent semantic information in the research of SCC-based networks. In previous research, researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification. However, the content of semantic information is quite complex. Although graph convolutional neural networks provide an effective solution for node classification tasks, due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures, the extracted feature information is subject to varying degrees of loss. Therefore, this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network. The Bidirectional Encoder Representations from Transformers (BERT) training word vector is introduced to extract the semantic features in the network, and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network. A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification. We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Scheduling optimization for UAV communication coverage using virtual force-based PSO model Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1