Lu Sun , Xiaona Li , Mingyue Zhang , Liangtian Wan , Yun Lin , Xianpeng Wang , Gang Xu
{"title":"基于 scc 网络的多层网络嵌入图案","authors":"Lu Sun , Xiaona Li , Mingyue Zhang , Liangtian Wan , Yun Lin , Xianpeng Wang , Gang Xu","doi":"10.1016/j.dcan.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Interconnection of all things challenges the traditional communication methods, and Semantic Communication and Computing (SCC) will become new solutions. It is a challenging task to accurately detect, extract, and represent semantic information in the research of SCC-based networks. In previous research, researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification. However, the content of semantic information is quite complex. Although graph convolutional neural networks provide an effective solution for node classification tasks, due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures, the extracted feature information is subject to varying degrees of loss. Therefore, this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network. The Bidirectional Encoder Representations from Transformers (BERT) training word vector is introduced to extract the semantic features in the network, and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network. A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification. We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864824000142/pdfft?md5=126dbbe13ecc497016eed8f7a3a30a7f&pid=1-s2.0-S2352864824000142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-layer network embedding on scc-based network with motif\",\"authors\":\"Lu Sun , Xiaona Li , Mingyue Zhang , Liangtian Wan , Yun Lin , Xianpeng Wang , Gang Xu\",\"doi\":\"10.1016/j.dcan.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interconnection of all things challenges the traditional communication methods, and Semantic Communication and Computing (SCC) will become new solutions. It is a challenging task to accurately detect, extract, and represent semantic information in the research of SCC-based networks. In previous research, researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification. However, the content of semantic information is quite complex. Although graph convolutional neural networks provide an effective solution for node classification tasks, due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures, the extracted feature information is subject to varying degrees of loss. Therefore, this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network. The Bidirectional Encoder Representations from Transformers (BERT) training word vector is introduced to extract the semantic features in the network, and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network. A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification. We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000142/pdfft?md5=126dbbe13ecc497016eed8f7a3a30a7f&pid=1-s2.0-S2352864824000142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000142\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000142","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
万物互联对传统通信方式提出了挑战,语义通信与计算(Semantic Communication and Computing,SCC)将成为新的解决方案。在基于 SCC 的网络研究中,如何准确检测、提取和表示语义信息是一项具有挑战性的任务。在以往的研究中,研究人员通常使用卷积法提取图的特征信息,并执行相应的节点分类任务。然而,语义信息的内容相当复杂。虽然图卷积神经网络为节点分类任务提供了有效的解决方案,但由于其在表示多种关系模式方面的局限性,以及不能识别和分析高阶局部结构,提取的特征信息会受到不同程度的损失。因此,本文从单层拓扑网络扩展到多层异构拓扑网络。引入变压器双向编码器表征(BERT)训练词向量来提取网络中的语义特征,并结合网络模型表征网络的高阶局部特征模块对现有图神经网络进行改进。提出了一种基于 SCC 网络的多层网络嵌入算法,以完成端到端的节点分类任务。我们在一个真实的多层异构网络上验证了该算法的有效性。
Multi-layer network embedding on scc-based network with motif
Interconnection of all things challenges the traditional communication methods, and Semantic Communication and Computing (SCC) will become new solutions. It is a challenging task to accurately detect, extract, and represent semantic information in the research of SCC-based networks. In previous research, researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification. However, the content of semantic information is quite complex. Although graph convolutional neural networks provide an effective solution for node classification tasks, due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures, the extracted feature information is subject to varying degrees of loss. Therefore, this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network. The Bidirectional Encoder Representations from Transformers (BERT) training word vector is introduced to extract the semantic features in the network, and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network. A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification. We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.