Jan Euteneuer, Lucas Moitinho-Silva, Cornelius Courts
{"title":"无法通过 RNA 表达分析对法医相关的大脑解剖区域进行细分。","authors":"Jan Euteneuer, Lucas Moitinho-Silva, Cornelius Courts","doi":"10.1007/s12024-024-00787-7","DOIUrl":null,"url":null,"abstract":"<p><p>The contextualization of biological traces generated by severe head injuries can be beneficial for criminal investigations. Here we aimed to identify and validate mRNA candidates for a robust sub-differentiation of forensically and traumatologically relevant brain regions. To this purpose, massively parallel sequencing of whole transcriptomes in sample material taken from four different areas of the cerebral cortex (frontal, temporal, parietal, occipital lobe) was performed, followed by bioinformatical data analysis, classification, and biostatistical candidate selection. Candidates were evaluated by Multiplex-RT-PCR and capillary electrophoresis. Only a weak relative upregulation and solely for candidates expressed in the parietal lobe was observed. Two candidates with upregulation in the cerebellar region (PVALB and CDR2L) were chosen for further investigation; however, PVALB could not reliably and repeatedly be detected in any lobe whereas CDR2L was detectable in all lobes. Consequently, we suggest that differences in mRNA expression between four regions of the cerebral cortex are too small and less pronounced to be useful for and applicable in forensic RNA analysis. We conclude that sub-differentiation of these brain regions via RNA expression analysis is generally not feasible within a forensic scope.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":"1276-1281"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forensically relevant anatomical brain regions cannot be sub-differentiated by RNA expression analysis.\",\"authors\":\"Jan Euteneuer, Lucas Moitinho-Silva, Cornelius Courts\",\"doi\":\"10.1007/s12024-024-00787-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The contextualization of biological traces generated by severe head injuries can be beneficial for criminal investigations. Here we aimed to identify and validate mRNA candidates for a robust sub-differentiation of forensically and traumatologically relevant brain regions. To this purpose, massively parallel sequencing of whole transcriptomes in sample material taken from four different areas of the cerebral cortex (frontal, temporal, parietal, occipital lobe) was performed, followed by bioinformatical data analysis, classification, and biostatistical candidate selection. Candidates were evaluated by Multiplex-RT-PCR and capillary electrophoresis. Only a weak relative upregulation and solely for candidates expressed in the parietal lobe was observed. Two candidates with upregulation in the cerebellar region (PVALB and CDR2L) were chosen for further investigation; however, PVALB could not reliably and repeatedly be detected in any lobe whereas CDR2L was detectable in all lobes. Consequently, we suggest that differences in mRNA expression between four regions of the cerebral cortex are too small and less pronounced to be useful for and applicable in forensic RNA analysis. We conclude that sub-differentiation of these brain regions via RNA expression analysis is generally not feasible within a forensic scope.</p>\",\"PeriodicalId\":12449,\"journal\":{\"name\":\"Forensic Science, Medicine and Pathology\",\"volume\":\" \",\"pages\":\"1276-1281\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science, Medicine and Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12024-024-00787-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-024-00787-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Forensically relevant anatomical brain regions cannot be sub-differentiated by RNA expression analysis.
The contextualization of biological traces generated by severe head injuries can be beneficial for criminal investigations. Here we aimed to identify and validate mRNA candidates for a robust sub-differentiation of forensically and traumatologically relevant brain regions. To this purpose, massively parallel sequencing of whole transcriptomes in sample material taken from four different areas of the cerebral cortex (frontal, temporal, parietal, occipital lobe) was performed, followed by bioinformatical data analysis, classification, and biostatistical candidate selection. Candidates were evaluated by Multiplex-RT-PCR and capillary electrophoresis. Only a weak relative upregulation and solely for candidates expressed in the parietal lobe was observed. Two candidates with upregulation in the cerebellar region (PVALB and CDR2L) were chosen for further investigation; however, PVALB could not reliably and repeatedly be detected in any lobe whereas CDR2L was detectable in all lobes. Consequently, we suggest that differences in mRNA expression between four regions of the cerebral cortex are too small and less pronounced to be useful for and applicable in forensic RNA analysis. We conclude that sub-differentiation of these brain regions via RNA expression analysis is generally not feasible within a forensic scope.
期刊介绍:
Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.