利用分布式量子状态管理并行模拟量子网络

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Modeling and Computer Simulation Pub Date : 2024-01-31 DOI:10.1145/3634701
Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Martin Suchara, Rajkumar Kettimuthu
{"title":"利用分布式量子状态管理并行模拟量子网络","authors":"Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Martin Suchara, Rajkumar Kettimuthu","doi":"10.1145/3634701","DOIUrl":null,"url":null,"abstract":"<p>Quantum network simulators offer the opportunity to cost-efficiently investigate potential avenues for building networks that scale with the number of users, communication distance, and application demands by simulating alternative hardware designs and control protocols. Several quantum network simulators have been recently developed with these goals in mind. As the size of the simulated networks increases, however, sequential execution becomes time-consuming. Parallel execution presents a suitable method for scalable simulations of large-scale quantum networks, but the unique attributes of quantum information create unexpected challenges. In this work, we identify requirements for parallel simulation of quantum networks and develop the first parallel discrete-event quantum network simulator by modifying the existing serial simulator SeQUeNCe. Our contributions include the design and development of a quantum state manager (QSM) that maintains shared quantum information distributed across multiple processes. We also optimize our parallel code by minimizing the overhead of the QSM and decreasing the amount of synchronization needed among processes. Using these techniques, we observe a speedup of 2 to 25 times when simulating a 1,024-node linear network topology using 2 to 128 processes. We also observe an efficiency greater than 0.5 for up to 32 processes in a linear network topology of the same size and with the same workload. We repeat this evaluation with a randomized workload on a caveman network. We also introduce several methods for partitioning networks by mapping them to different parallel simulation processes. We have released the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Simulation of Quantum Networks with Distributed Quantum State Management\",\"authors\":\"Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Martin Suchara, Rajkumar Kettimuthu\",\"doi\":\"10.1145/3634701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum network simulators offer the opportunity to cost-efficiently investigate potential avenues for building networks that scale with the number of users, communication distance, and application demands by simulating alternative hardware designs and control protocols. Several quantum network simulators have been recently developed with these goals in mind. As the size of the simulated networks increases, however, sequential execution becomes time-consuming. Parallel execution presents a suitable method for scalable simulations of large-scale quantum networks, but the unique attributes of quantum information create unexpected challenges. In this work, we identify requirements for parallel simulation of quantum networks and develop the first parallel discrete-event quantum network simulator by modifying the existing serial simulator SeQUeNCe. Our contributions include the design and development of a quantum state manager (QSM) that maintains shared quantum information distributed across multiple processes. We also optimize our parallel code by minimizing the overhead of the QSM and decreasing the amount of synchronization needed among processes. Using these techniques, we observe a speedup of 2 to 25 times when simulating a 1,024-node linear network topology using 2 to 128 processes. We also observe an efficiency greater than 0.5 for up to 32 processes in a linear network topology of the same size and with the same workload. We repeat this evaluation with a randomized workload on a caveman network. We also introduce several methods for partitioning networks by mapping them to different parallel simulation processes. We have released the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.</p>\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3634701\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3634701","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

量子网络模拟器通过模拟替代硬件设计和控制协议,为以低成本、高效率的方式研究构建可随用户数量、通信距离和应用需求扩展的网络的潜在途径提供了机会。最近开发的几种量子网络模拟器都考虑到了这些目标。然而,随着模拟网络规模的扩大,顺序执行变得非常耗时。并行执行为大规模量子网络的可扩展模拟提供了一种合适的方法,但量子信息的独特属性带来了意想不到的挑战。在这项工作中,我们确定了量子网络并行仿真的要求,并通过修改现有的串行仿真器 SeQUeNCe,开发了首个并行离散事件量子网络仿真器。我们的贡献包括设计和开发了一个量子态管理器(QSM),用于维护分布在多个进程中的共享量子信息。我们还通过最小化 QSM 的开销和减少进程间所需的同步量来优化并行代码。利用这些技术,我们观察到在使用 2 到 128 个进程模拟 1,024 个节点的线性网络拓扑时,速度提高了 2 到 25 倍。我们还观察到,在相同规模和相同工作量的线性网络拓扑中,最多 32 个进程的效率大于 0.5。我们使用洞穴人网络上的随机工作负载重复了这一评估。我们还介绍了几种通过将网络映射到不同并行仿真进程来划分网络的方法。我们已将并行 SeQUeNCe 仿真器作为开源工具与现有的顺序版本一起发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Simulation of Quantum Networks with Distributed Quantum State Management

Quantum network simulators offer the opportunity to cost-efficiently investigate potential avenues for building networks that scale with the number of users, communication distance, and application demands by simulating alternative hardware designs and control protocols. Several quantum network simulators have been recently developed with these goals in mind. As the size of the simulated networks increases, however, sequential execution becomes time-consuming. Parallel execution presents a suitable method for scalable simulations of large-scale quantum networks, but the unique attributes of quantum information create unexpected challenges. In this work, we identify requirements for parallel simulation of quantum networks and develop the first parallel discrete-event quantum network simulator by modifying the existing serial simulator SeQUeNCe. Our contributions include the design and development of a quantum state manager (QSM) that maintains shared quantum information distributed across multiple processes. We also optimize our parallel code by minimizing the overhead of the QSM and decreasing the amount of synchronization needed among processes. Using these techniques, we observe a speedup of 2 to 25 times when simulating a 1,024-node linear network topology using 2 to 128 processes. We also observe an efficiency greater than 0.5 for up to 32 processes in a linear network topology of the same size and with the same workload. We repeat this evaluation with a randomized workload on a caveman network. We also introduce several methods for partitioning networks by mapping them to different parallel simulation processes. We have released the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
期刊最新文献
Reproducibility Report for the Paper "Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation" Data Farming the Parameters of Simulation-Optimization Solvers Modeling of biogas production from hydrothermal carbonization products in a continuous anaerobic digester. Optimized Real-Time Stochastic Model of Power Electronic Converters based on FPGA Virtual Time III, Part 3: Throttling and Message Cancellation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1