{"title":"加性噪声驱动的半线性抛物 SPDE 的罗森布洛克半隐式方法的弱收敛性","authors":"Jean Daniel Mukam, Antoine Tambue","doi":"10.1515/cmam-2023-0055","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the weak convergence of the Rosenbrock semi-implicit method for semilinear parabolic stochastic partial differential equations (SPDEs) driven by additive noise. We are interested in SPDEs where the nonlinear part is stronger than the linear part, also called stochastic reaction dominated transport equations. For such SPDEs, many standard numerical schemes lose their stability properties. Exponential Rosenbrock and Rosenbrock-type methods were proved to be efficient for such SPDEs, but only their strong convergence were recently analyzed. Here, we investigate the weak convergence of the Rosenbrock semi-implicit method. We obtain a weak convergence rate which is twice the rate of the strong convergence. Our error analysis does not rely on Malliavin calculus, but rather only uses the Kolmogorov equation and the smoothing properties of the resolvent operator resulting from the Rosenbrock semi-implicit approximation.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Convergence of the Rosenbrock Semi-implicit Method for Semilinear Parabolic SPDEs Driven by Additive Noise\",\"authors\":\"Jean Daniel Mukam, Antoine Tambue\",\"doi\":\"10.1515/cmam-2023-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to investigate the weak convergence of the Rosenbrock semi-implicit method for semilinear parabolic stochastic partial differential equations (SPDEs) driven by additive noise. We are interested in SPDEs where the nonlinear part is stronger than the linear part, also called stochastic reaction dominated transport equations. For such SPDEs, many standard numerical schemes lose their stability properties. Exponential Rosenbrock and Rosenbrock-type methods were proved to be efficient for such SPDEs, but only their strong convergence were recently analyzed. Here, we investigate the weak convergence of the Rosenbrock semi-implicit method. We obtain a weak convergence rate which is twice the rate of the strong convergence. Our error analysis does not rely on Malliavin calculus, but rather only uses the Kolmogorov equation and the smoothing properties of the resolvent operator resulting from the Rosenbrock semi-implicit approximation.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0055\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Weak Convergence of the Rosenbrock Semi-implicit Method for Semilinear Parabolic SPDEs Driven by Additive Noise
This paper aims to investigate the weak convergence of the Rosenbrock semi-implicit method for semilinear parabolic stochastic partial differential equations (SPDEs) driven by additive noise. We are interested in SPDEs where the nonlinear part is stronger than the linear part, also called stochastic reaction dominated transport equations. For such SPDEs, many standard numerical schemes lose their stability properties. Exponential Rosenbrock and Rosenbrock-type methods were proved to be efficient for such SPDEs, but only their strong convergence were recently analyzed. Here, we investigate the weak convergence of the Rosenbrock semi-implicit method. We obtain a weak convergence rate which is twice the rate of the strong convergence. Our error analysis does not rely on Malliavin calculus, but rather only uses the Kolmogorov equation and the smoothing properties of the resolvent operator resulting from the Rosenbrock semi-implicit approximation.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.