Mohammad Hajizadeh, Mohammad Sabokrou, Adel Rahmani
{"title":"STARNet:用于嵌入式设备上高效视频对象检测的时空感知递归网络","authors":"Mohammad Hajizadeh, Mohammad Sabokrou, Adel Rahmani","doi":"10.1007/s00138-023-01504-0","DOIUrl":null,"url":null,"abstract":"<p>The challenge of converting various object detection methods from image to video remains unsolved. When applied to video, image methods frequently fail to generalize effectively due to issues, such as blurriness, different and unclear positions, low quality, and other relevant issues. Additionally, the lack of a good long-term memory in video object detection presents an additional challenge. In the majority of instances, the outputs of successive frames are known to be quite similar; therefore, this fact is relied upon. Furthermore, the information contained in a series of successive or non-successive frames is greater than that contained in a single frame. In this study, we present a novel recurrent cell for feature propagation and identify the optimal location of layers to increase the memory interval. As a result, we achieved higher accuracy compared to other proposed methods in other studies. Hardware limitations can exacerbate this challenge. The paper aims to implement and increase the efficiency of the methods on embedded devices. We achieved 68.7% <i>mAP</i> accuracy on the ImageNet VID dataset for embedded devices in real-time and at a speed of 52 <i>fps</i>.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"32 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STARNet: spatio-temporal aware recurrent network for efficient video object detection on embedded devices\",\"authors\":\"Mohammad Hajizadeh, Mohammad Sabokrou, Adel Rahmani\",\"doi\":\"10.1007/s00138-023-01504-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The challenge of converting various object detection methods from image to video remains unsolved. When applied to video, image methods frequently fail to generalize effectively due to issues, such as blurriness, different and unclear positions, low quality, and other relevant issues. Additionally, the lack of a good long-term memory in video object detection presents an additional challenge. In the majority of instances, the outputs of successive frames are known to be quite similar; therefore, this fact is relied upon. Furthermore, the information contained in a series of successive or non-successive frames is greater than that contained in a single frame. In this study, we present a novel recurrent cell for feature propagation and identify the optimal location of layers to increase the memory interval. As a result, we achieved higher accuracy compared to other proposed methods in other studies. Hardware limitations can exacerbate this challenge. The paper aims to implement and increase the efficiency of the methods on embedded devices. We achieved 68.7% <i>mAP</i> accuracy on the ImageNet VID dataset for embedded devices in real-time and at a speed of 52 <i>fps</i>.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-023-01504-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-023-01504-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
STARNet: spatio-temporal aware recurrent network for efficient video object detection on embedded devices
The challenge of converting various object detection methods from image to video remains unsolved. When applied to video, image methods frequently fail to generalize effectively due to issues, such as blurriness, different and unclear positions, low quality, and other relevant issues. Additionally, the lack of a good long-term memory in video object detection presents an additional challenge. In the majority of instances, the outputs of successive frames are known to be quite similar; therefore, this fact is relied upon. Furthermore, the information contained in a series of successive or non-successive frames is greater than that contained in a single frame. In this study, we present a novel recurrent cell for feature propagation and identify the optimal location of layers to increase the memory interval. As a result, we achieved higher accuracy compared to other proposed methods in other studies. Hardware limitations can exacerbate this challenge. The paper aims to implement and increase the efficiency of the methods on embedded devices. We achieved 68.7% mAP accuracy on the ImageNet VID dataset for embedded devices in real-time and at a speed of 52 fps.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.