X-FSPMiner:频繁相似模式挖掘的新算法

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Knowledge Discovery from Data Pub Date : 2024-01-30 DOI:10.1145/3643820
Ansel Y. Rodríguez-González, Ramón Aranda, Miguel Á. Álvarez-Carmona, Angel Díaz-Pacheco, Rosa María Valdovinos Rosas
{"title":"X-FSPMiner:频繁相似模式挖掘的新算法","authors":"Ansel Y. Rodríguez-González, Ramón Aranda, Miguel Á. Álvarez-Carmona, Angel Díaz-Pacheco, Rosa María Valdovinos Rosas","doi":"10.1145/3643820","DOIUrl":null,"url":null,"abstract":"<p>Frequent similar pattern mining (FSP mining) allows found frequent patterns hidden from the classical approach. However, the use of similarity functions implies more computational effort, becoming necessary to develop more efficient algorithms for FSP mining. This work aims to improve the efficiency of mining all FSPs when using Boolean and non-increasing monotonic similarity functions. A data structure to condense an object description collection named <i>FV-Tree</i>, and an algorithm for mine all FSP from the <i>FV-Tree</i>, named <i>X-FSPMiner</i>, are proposed. The experimental results reveal that the novel algorithm <i>X-FSPMiner</i> vastly outperforms the state-of-the-art algorithms for mine all FSP using Boolean and non-increasing monotonic similarity functions.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"32 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-FSPMiner: A Novel Algorithm for Frequent Similar Pattern Mining\",\"authors\":\"Ansel Y. Rodríguez-González, Ramón Aranda, Miguel Á. Álvarez-Carmona, Angel Díaz-Pacheco, Rosa María Valdovinos Rosas\",\"doi\":\"10.1145/3643820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Frequent similar pattern mining (FSP mining) allows found frequent patterns hidden from the classical approach. However, the use of similarity functions implies more computational effort, becoming necessary to develop more efficient algorithms for FSP mining. This work aims to improve the efficiency of mining all FSPs when using Boolean and non-increasing monotonic similarity functions. A data structure to condense an object description collection named <i>FV-Tree</i>, and an algorithm for mine all FSP from the <i>FV-Tree</i>, named <i>X-FSPMiner</i>, are proposed. The experimental results reveal that the novel algorithm <i>X-FSPMiner</i> vastly outperforms the state-of-the-art algorithms for mine all FSP using Boolean and non-increasing monotonic similarity functions.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643820\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643820","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

频繁相似模式挖掘(FSP 挖掘)可以发现隐藏在经典方法中的频繁模式。然而,使用相似性函数意味着更多的计算工作,因此有必要开发更高效的 FSP 挖掘算法。这项工作旨在提高使用布尔和非递增单调相似函数挖掘所有 FSP 的效率。本文提出了一种用于压缩对象描述集合的数据结构,命名为 FV-Tree,以及一种从 FV-Tree 中挖掘所有 FSP 的算法,命名为 X-FSPMiner。实验结果表明,新算法 X-FSPMiner 在使用布尔和非递增单调相似函数挖掘所有 FSP 方面大大优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X-FSPMiner: A Novel Algorithm for Frequent Similar Pattern Mining

Frequent similar pattern mining (FSP mining) allows found frequent patterns hidden from the classical approach. However, the use of similarity functions implies more computational effort, becoming necessary to develop more efficient algorithms for FSP mining. This work aims to improve the efficiency of mining all FSPs when using Boolean and non-increasing monotonic similarity functions. A data structure to condense an object description collection named FV-Tree, and an algorithm for mine all FSP from the FV-Tree, named X-FSPMiner, are proposed. The experimental results reveal that the novel algorithm X-FSPMiner vastly outperforms the state-of-the-art algorithms for mine all FSP using Boolean and non-increasing monotonic similarity functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
期刊最新文献
Structural properties on scale-free tree network with an ultra-large diameter Learning Individual Treatment Effects under Heterogeneous Interference in Networks Deconfounding User Preference in Recommendation Systems through Implicit and Explicit Feedback Interdisciplinary Fairness in Imbalanced Research Proposal Topic Inference: A Hierarchical Transformer-based Method with Selective Interpolation A Compact Vulnerability Knowledge Graph for Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1