Ya He , Hongxia Zhang , Jingang Li , Hui Zhou , Fei Wang , Guangliang Zhang , Yuetao Wen
{"title":"鉴定杯突相关lncRNAs特征以预测肾透明细胞癌患者的预后","authors":"Ya He , Hongxia Zhang , Jingang Li , Hui Zhou , Fei Wang , Guangliang Zhang , Yuetao Wen","doi":"10.1016/j.jgeb.2023.100338","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Kidney renal clear cell carcinoma (KIRC), with low survival rate, is the most frequent subtype of renal cell carcinoma. Recently, more and more studies indicate that cuproptosis-related genes (CRGs) and long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of many types of cancers. However, the roles of cuproptosis-related lncRNAs (CRlncRNAs) in the KIRC was uncertain.</p></div><div><h3>Results</h3><p>In our study, CRlncRNAs were obtained by coexpression between differentially expressed and prognostic CRGs and differentially expressed and prognostic lncRNAs, and an 8-CRlncRNAs (AC007743.1, AC022915.1, AP005136.4, APCDD1L-DT, HAGLR, LINC02027, MANCR and SMARCA5-AS1) risk model was established according to least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. This risk model could differentiate immune cell infiltration, immune function and gene mutation.</p></div><div><h3>Conclusions</h3><p>This 8-CRlncRNAs risk model may be promising for the clinical prediction of prognoses, tumor immune, immunotherapy response and chemotherapeutic response in KIRC patients.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X23015093/pdfft?md5=1f967c8db9a72fa6cfbb7cd01ca3b887&pid=1-s2.0-S1687157X23015093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification of cuproptosis-related lncRNAs signature for predicting the prognosis in patients with kidney renal clear cell carcinoma\",\"authors\":\"Ya He , Hongxia Zhang , Jingang Li , Hui Zhou , Fei Wang , Guangliang Zhang , Yuetao Wen\",\"doi\":\"10.1016/j.jgeb.2023.100338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Kidney renal clear cell carcinoma (KIRC), with low survival rate, is the most frequent subtype of renal cell carcinoma. Recently, more and more studies indicate that cuproptosis-related genes (CRGs) and long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of many types of cancers. However, the roles of cuproptosis-related lncRNAs (CRlncRNAs) in the KIRC was uncertain.</p></div><div><h3>Results</h3><p>In our study, CRlncRNAs were obtained by coexpression between differentially expressed and prognostic CRGs and differentially expressed and prognostic lncRNAs, and an 8-CRlncRNAs (AC007743.1, AC022915.1, AP005136.4, APCDD1L-DT, HAGLR, LINC02027, MANCR and SMARCA5-AS1) risk model was established according to least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. This risk model could differentiate immune cell infiltration, immune function and gene mutation.</p></div><div><h3>Conclusions</h3><p>This 8-CRlncRNAs risk model may be promising for the clinical prediction of prognoses, tumor immune, immunotherapy response and chemotherapeutic response in KIRC patients.</p></div>\",\"PeriodicalId\":53463,\"journal\":{\"name\":\"Journal of Genetic Engineering and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1687157X23015093/pdfft?md5=1f967c8db9a72fa6cfbb7cd01ca3b887&pid=1-s2.0-S1687157X23015093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687157X23015093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X23015093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Identification of cuproptosis-related lncRNAs signature for predicting the prognosis in patients with kidney renal clear cell carcinoma
Background
Kidney renal clear cell carcinoma (KIRC), with low survival rate, is the most frequent subtype of renal cell carcinoma. Recently, more and more studies indicate that cuproptosis-related genes (CRGs) and long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of many types of cancers. However, the roles of cuproptosis-related lncRNAs (CRlncRNAs) in the KIRC was uncertain.
Results
In our study, CRlncRNAs were obtained by coexpression between differentially expressed and prognostic CRGs and differentially expressed and prognostic lncRNAs, and an 8-CRlncRNAs (AC007743.1, AC022915.1, AP005136.4, APCDD1L-DT, HAGLR, LINC02027, MANCR and SMARCA5-AS1) risk model was established according to least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. This risk model could differentiate immune cell infiltration, immune function and gene mutation.
Conclusions
This 8-CRlncRNAs risk model may be promising for the clinical prediction of prognoses, tumor immune, immunotherapy response and chemotherapeutic response in KIRC patients.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts