Laurenz Schröer , Tim Balcaen , Karel Folens , Nico Boon , Tim De Kock , Greet Kerckhofs , Veerle Cnudde
{"title":"利用微计算机断层扫描和对比增强染色剂实现蓝藻生物膜的三维可视化","authors":"Laurenz Schröer , Tim Balcaen , Karel Folens , Nico Boon , Tim De Kock , Greet Kerckhofs , Veerle Cnudde","doi":"10.1016/j.tmater.2024.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, biofilms colonizing surfaces are mainly imaged in 2D by conventional techniques, such as optical or scanning electron microscopy. Confocal laser scanning microscopy or optical coherence tomography can visualize biofilms in 3D, but they suffer from a limited penetration depth and cannot visualize biofilms in opaque materials. Micro-computed tomography (µCT) can overcome these issues, but µCT cannot easily distinguish biofilm structures from water due to a lack of contrast difference. Within this research, five contrast-enhancing staining agents (CESAs) were evaluated for their staining potential of cyanobacterial biofilms, aiming to visualize these biofilms in 3D. Isotonic Lugol and 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate (Hf-WD 1:2 POM) were the most promising, as they allowed visualization of the biofilms and revealed structures in the stained biofilms. Staining with isotonic Lugol could clearly visualize bundles of filaments within the biofilm, while Hf-WD 1:2 POM revealed a smooth biofilm. It is assumed that both CESAs have a different affinity towards the biofilms and could thus be used complementary. Monolacunary Wells-Dawson polyoxometalate (Mono-WD POM) showed moderate discrimination while staining with cationic iodinated CA4+ and Hexabrix® (Guerbet) containing anionic ioxaglate did not allow to distinctly visualize the biofilms. These results indicate that µCT, together with CESAs such as isotonic Lugol and Hf-WD 1:2 POM, can be used as a tool to image extensive biofilms or microbial mats in 3D. Further research will determine whether these CESAs are suitable for visualizing biofilms within opaque porous media.</p></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949673X24000019/pdfft?md5=cd3647016772b1dd88e1fd1ace94772c&pid=1-s2.0-S2949673X24000019-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D Visualization of cyanobacterial biofilms using micro-computed tomography with contrast-enhancing staining agents\",\"authors\":\"Laurenz Schröer , Tim Balcaen , Karel Folens , Nico Boon , Tim De Kock , Greet Kerckhofs , Veerle Cnudde\",\"doi\":\"10.1016/j.tmater.2024.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, biofilms colonizing surfaces are mainly imaged in 2D by conventional techniques, such as optical or scanning electron microscopy. Confocal laser scanning microscopy or optical coherence tomography can visualize biofilms in 3D, but they suffer from a limited penetration depth and cannot visualize biofilms in opaque materials. Micro-computed tomography (µCT) can overcome these issues, but µCT cannot easily distinguish biofilm structures from water due to a lack of contrast difference. Within this research, five contrast-enhancing staining agents (CESAs) were evaluated for their staining potential of cyanobacterial biofilms, aiming to visualize these biofilms in 3D. Isotonic Lugol and 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate (Hf-WD 1:2 POM) were the most promising, as they allowed visualization of the biofilms and revealed structures in the stained biofilms. Staining with isotonic Lugol could clearly visualize bundles of filaments within the biofilm, while Hf-WD 1:2 POM revealed a smooth biofilm. It is assumed that both CESAs have a different affinity towards the biofilms and could thus be used complementary. Monolacunary Wells-Dawson polyoxometalate (Mono-WD POM) showed moderate discrimination while staining with cationic iodinated CA4+ and Hexabrix® (Guerbet) containing anionic ioxaglate did not allow to distinctly visualize the biofilms. These results indicate that µCT, together with CESAs such as isotonic Lugol and Hf-WD 1:2 POM, can be used as a tool to image extensive biofilms or microbial mats in 3D. Further research will determine whether these CESAs are suitable for visualizing biofilms within opaque porous media.</p></div>\",\"PeriodicalId\":101254,\"journal\":{\"name\":\"Tomography of Materials and Structures\",\"volume\":\"4 \",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949673X24000019/pdfft?md5=cd3647016772b1dd88e1fd1ace94772c&pid=1-s2.0-S2949673X24000019-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography of Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949673X24000019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X24000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Visualization of cyanobacterial biofilms using micro-computed tomography with contrast-enhancing staining agents
Currently, biofilms colonizing surfaces are mainly imaged in 2D by conventional techniques, such as optical or scanning electron microscopy. Confocal laser scanning microscopy or optical coherence tomography can visualize biofilms in 3D, but they suffer from a limited penetration depth and cannot visualize biofilms in opaque materials. Micro-computed tomography (µCT) can overcome these issues, but µCT cannot easily distinguish biofilm structures from water due to a lack of contrast difference. Within this research, five contrast-enhancing staining agents (CESAs) were evaluated for their staining potential of cyanobacterial biofilms, aiming to visualize these biofilms in 3D. Isotonic Lugol and 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate (Hf-WD 1:2 POM) were the most promising, as they allowed visualization of the biofilms and revealed structures in the stained biofilms. Staining with isotonic Lugol could clearly visualize bundles of filaments within the biofilm, while Hf-WD 1:2 POM revealed a smooth biofilm. It is assumed that both CESAs have a different affinity towards the biofilms and could thus be used complementary. Monolacunary Wells-Dawson polyoxometalate (Mono-WD POM) showed moderate discrimination while staining with cationic iodinated CA4+ and Hexabrix® (Guerbet) containing anionic ioxaglate did not allow to distinctly visualize the biofilms. These results indicate that µCT, together with CESAs such as isotonic Lugol and Hf-WD 1:2 POM, can be used as a tool to image extensive biofilms or microbial mats in 3D. Further research will determine whether these CESAs are suitable for visualizing biofilms within opaque porous media.