{"title":"利用重构 WiFi CSI 的基于深度学习的轻量级人类活动识别系统","authors":"Xingcan Chen;Yi Zou;Chenglin Li;Wendong Xiao","doi":"10.1109/THMS.2023.3348694","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI\",\"authors\":\"Xingcan Chen;Yi Zou;Chenglin Li;Wendong Xiao\",\"doi\":\"10.1109/THMS.2023.3348694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.\",\"PeriodicalId\":48916,\"journal\":{\"name\":\"IEEE Transactions on Human-Machine Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Human-Machine Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10416692/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10416692/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
人类活动识别(HAR)是人机交互领域的一项关键技术。与使用传感器或特殊设备的系统不同,基于 WiFi 信道状态信息(CSI)的人类活动识别系统具有非接触、成本低的特点,但受限于计算复杂度高和跨域泛化性能差。针对上述问题,本文提出了一种基于重构 WiFi CSI 张量和深度学习的轻量级 HAR 系统(Wisor-DL),该系统首先利用稀疏信号表示算法和 CSI 张量构建与分解算法重构 WiFi CSI 信号。然后,设计具有残差连接的门控时序卷积网络,以增强和融合重构的 WiFi CSI 信号的特征。最后,树突网络代替传统的密集层做出活动的最终决定。实验结果表明,Wisor-DL 是一种轻量级 HAR 系统,具有较高的识别准确率和令人满意的跨域泛化能力。
A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI
Human activity recognition (HAR) is a key technology in the field of human–computer interaction. Unlike systems using sensors or special devices, the WiFi channel state information (CSI)-based HAR systems are noncontact and low cost, but they are limited by high computational complexity and poor cross-domain generalization performance. In order to address the above problems, a reconstructed WiFi CSI tensor and deep learning based lightweight HAR system (Wisor-DL) is proposed, which firstly reconstructs WiFi CSI signals with a sparse signal representation algorithm, and a CSI tensor construction and decomposition algorithm. Then, gated temporal convolutional network with residual connections is designed to enhance and fuse the features of the reconstructed WiFi CSI signals. Finally, dendrite network makes the final decision of activity instead of the traditional dense layer. Experimental results show that Wisor-DL is a lightweight HAR system with high recognition accuracy and satisfactory cross-domain generalization ability.
期刊介绍:
The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.