利用 LSTM 循环神经网络对人类手动控制行为进行分类

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Human-Machine Systems Pub Date : 2023-11-29 DOI:10.1109/THMS.2023.3327145
Rogier Versteeg;Daan M. Pool;Max Mulder
{"title":"利用 LSTM 循环神经网络对人类手动控制行为进行分类","authors":"Rogier Versteeg;Daan M. Pool;Max Mulder","doi":"10.1109/THMS.2023.3327145","DOIUrl":null,"url":null,"abstract":"This article discusses a long short-term memory (LSTM) recurrent neural network that uses raw time-domain data obtained in compensatory tracking tasks as input features for classifying (the adaptation of) human manual control with single- and double-integrator controlled element dynamics. Data from two different experiments were used to train and validate the LSTM classifier, including investigating effects of several key data preprocessing settings. The model correctly classifies human control behavior (cross-experiment validation accuracy 96%) using short 1.6-s data windows. To achieve this accuracy, it is found crucial to scale/standardize the input feature data and use a combination of input signals that includes the tracking error and human control output. A possible online application of the classifier was tested on data from a third experiment with time-varying and slightly different controlled element dynamics. The results show that the LSTM classification is still successful, which makes it a promising online technique to rapidly detect adaptations in human control behavior.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Human Manual Control Behavior Using LSTM Recurrent Neural Networks\",\"authors\":\"Rogier Versteeg;Daan M. Pool;Max Mulder\",\"doi\":\"10.1109/THMS.2023.3327145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses a long short-term memory (LSTM) recurrent neural network that uses raw time-domain data obtained in compensatory tracking tasks as input features for classifying (the adaptation of) human manual control with single- and double-integrator controlled element dynamics. Data from two different experiments were used to train and validate the LSTM classifier, including investigating effects of several key data preprocessing settings. The model correctly classifies human control behavior (cross-experiment validation accuracy 96%) using short 1.6-s data windows. To achieve this accuracy, it is found crucial to scale/standardize the input feature data and use a combination of input signals that includes the tracking error and human control output. A possible online application of the classifier was tested on data from a third experiment with time-varying and slightly different controlled element dynamics. The results show that the LSTM classification is still successful, which makes it a promising online technique to rapidly detect adaptations in human control behavior.\",\"PeriodicalId\":48916,\"journal\":{\"name\":\"IEEE Transactions on Human-Machine Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Human-Machine Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10334014/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10334014/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一种长短期记忆(LSTM)递归神经网络,该网络使用在补偿跟踪任务中获得的原始时域数据作为输入特征,对具有单积分器和双积分器受控元件动态的人类手动控制(适应性)进行分类。来自两个不同实验的数据被用于训练和验证 LSTM 分类器,包括研究几个关键数据预处理设置的效果。使用 1.6 秒的短数据窗口,该模型能正确地对人类控制行为进行分类(交叉实验验证准确率为 96%)。要达到这一准确率,关键在于对输入特征数据进行缩放/标准化,并使用包括跟踪误差和人类控制输出在内的输入信号组合。分类器的可能在线应用在第三次实验的数据上进行了测试,实验中的受控元件动态随时间变化且略有不同。结果表明,LSTM 分类仍然是成功的,这使其成为快速检测人类控制行为适应性的一种有前途的在线技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying Human Manual Control Behavior Using LSTM Recurrent Neural Networks
This article discusses a long short-term memory (LSTM) recurrent neural network that uses raw time-domain data obtained in compensatory tracking tasks as input features for classifying (the adaptation of) human manual control with single- and double-integrator controlled element dynamics. Data from two different experiments were used to train and validate the LSTM classifier, including investigating effects of several key data preprocessing settings. The model correctly classifies human control behavior (cross-experiment validation accuracy 96%) using short 1.6-s data windows. To achieve this accuracy, it is found crucial to scale/standardize the input feature data and use a combination of input signals that includes the tracking error and human control output. A possible online application of the classifier was tested on data from a third experiment with time-varying and slightly different controlled element dynamics. The results show that the LSTM classification is still successful, which makes it a promising online technique to rapidly detect adaptations in human control behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
期刊最新文献
Table of Contents Present a World of Opportunity IEEE Systems, Man, and Cybernetics Society Information IEEE Transactions on Human-Machine Systems Information for Authors TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1