随机变量的高效最优柯尔莫哥洛夫逼近法

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Pub Date : 2024-02-01 DOI:10.1016/j.artint.2024.104086
Liat Cohen , Tal Grinshpoun , Gera Weiss
{"title":"随机变量的高效最优柯尔莫哥洛夫逼近法","authors":"Liat Cohen ,&nbsp;Tal Grinshpoun ,&nbsp;Gera Weiss","doi":"10.1016/j.artint.2024.104086","DOIUrl":null,"url":null,"abstract":"<div><p><span>Discrete random variables<span> are essential ingredients in various artificial intelligence problems. These include the estimation of the probability of missing the deadline in a series-parallel schedule and the assignment of suppliers to tasks in a project in a manner that maximizes the probability of meeting the overall project deadline. The solving of such problems involves repetitive operations, such as summation, over random variables. However, these computations are NP-hard. Therefore, we explore techniques and methods for approximating random variables with a given support size and minimal Kolmogorov distance. We examine both the general problem of approximating a random variable and a one-sided version in which over-approximation is allowed but not under-approximation. We propose several algorithms and evaluate their performance through </span></span>computational complexity<span> analysis and empirical evaluation. All the presented algorithms are optimal in the sense that given an input random variable and a requested support size, they return a new approximated random variable with the requested support size and minimal Kolmogorov distance from the input random variable. Our approximation algorithms offer useful estimations of probabilities in situations where exact computations are not feasible due to NP-hardness complexity.</span></p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient optimal Kolmogorov approximation of random variables\",\"authors\":\"Liat Cohen ,&nbsp;Tal Grinshpoun ,&nbsp;Gera Weiss\",\"doi\":\"10.1016/j.artint.2024.104086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Discrete random variables<span> are essential ingredients in various artificial intelligence problems. These include the estimation of the probability of missing the deadline in a series-parallel schedule and the assignment of suppliers to tasks in a project in a manner that maximizes the probability of meeting the overall project deadline. The solving of such problems involves repetitive operations, such as summation, over random variables. However, these computations are NP-hard. Therefore, we explore techniques and methods for approximating random variables with a given support size and minimal Kolmogorov distance. We examine both the general problem of approximating a random variable and a one-sided version in which over-approximation is allowed but not under-approximation. We propose several algorithms and evaluate their performance through </span></span>computational complexity<span> analysis and empirical evaluation. All the presented algorithms are optimal in the sense that given an input random variable and a requested support size, they return a new approximated random variable with the requested support size and minimal Kolmogorov distance from the input random variable. Our approximation algorithms offer useful estimations of probabilities in situations where exact computations are not feasible due to NP-hardness complexity.</span></p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224000225\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000225","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

离散随机变量是各种人工智能问题的基本要素。这些问题包括在一系列并行计划中估算错过截止日期的概率,以及以最大化遵守整个项目截止日期的概率的方式为项目中的任务分配供应商。解决这些问题涉及随机变量的重复运算,如求和。然而,这些计算是 NP 难的。因此,我们探索了以给定的支持大小和最小的科尔莫哥洛夫距离逼近随机变量的技术和方法。我们既研究了近似随机变量的一般问题,也研究了允许过近似但不允许欠近似的单边问题。我们提出了几种算法,并通过计算复杂度分析和经验评估来评价它们的性能。从给定输入随机变量和要求的支持大小的意义上讲,所有提出的算法都是最优的,它们返回的新近似随机变量具有要求的支持大小和与输入随机变量的最小柯尔莫哥洛夫距离。我们的近似算法可以在由于 NP 难度复杂性而无法进行精确计算的情况下,提供有用的概率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient optimal Kolmogorov approximation of random variables

Discrete random variables are essential ingredients in various artificial intelligence problems. These include the estimation of the probability of missing the deadline in a series-parallel schedule and the assignment of suppliers to tasks in a project in a manner that maximizes the probability of meeting the overall project deadline. The solving of such problems involves repetitive operations, such as summation, over random variables. However, these computations are NP-hard. Therefore, we explore techniques and methods for approximating random variables with a given support size and minimal Kolmogorov distance. We examine both the general problem of approximating a random variable and a one-sided version in which over-approximation is allowed but not under-approximation. We propose several algorithms and evaluate their performance through computational complexity analysis and empirical evaluation. All the presented algorithms are optimal in the sense that given an input random variable and a requested support size, they return a new approximated random variable with the requested support size and minimal Kolmogorov distance from the input random variable. Our approximation algorithms offer useful estimations of probabilities in situations where exact computations are not feasible due to NP-hardness complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
期刊最新文献
Integration of memory systems supporting non-symbolic representations in an architecture for lifelong development of artificial agents Editorial Board PathLAD+: Towards effective exact methods for subgraph isomorphism problem Interval abstractions for robust counterfactual explanations Approximating problems in abstract argumentation with graph convolutional networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1