从知识汇编角度看信念跟踪的查询和转换

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Annals of Mathematics and Artificial Intelligence Pub Date : 2024-01-31 DOI:10.1007/s10472-023-09908-4
Alexandre Niveau, Hector Palacios, Sergej Scheck, Bruno Zanuttini
{"title":"从知识汇编角度看信念跟踪的查询和转换","authors":"Alexandre Niveau,&nbsp;Hector Palacios,&nbsp;Sergej Scheck,&nbsp;Bruno Zanuttini","doi":"10.1007/s10472-023-09908-4","DOIUrl":null,"url":null,"abstract":"<div><p>Nondeterministic planning is the process of computing plans or policies of actions achieving given goals, when there is nondeterministic uncertainty about the initial state and/or the outcomes of actions. This process encompasses many precise computational problems, from classical planning, where there is no uncertainty, to contingent planning, where the agent has access to observations about the current state. Fundamental to these problems is belief tracking, that is, obtaining information about the current state after a history of actions and observations. At an abstract level, belief tracking can be seen as maintaining and querying the current belief state, that is, the set of states consistent with the history. We take a knowledge compilation perspective on these processes, by defining the queries and transformations which pertain to belief tracking. We study them for propositional domains, considering a number of representations for belief states, actions, observations, and goals. In particular, for belief states, we consider explicit propositional representations with and without auxiliary variables, as well as implicit representations by the history itself; and for actions, we consider propositional action theories as well as ground PDDL and conditional STRIPS. For all combinations, we investigate the complexity of relevant queries (for instance, whether an action is applicable at a belief state) and transformations (for instance, revising a belief state by an observation); we also discuss the relative succinctness of representations. Though many results show an expected tradeoff between succinctness and tractability, we identify some interesting combinations. We also discuss the choice of representations by existing planners in light of our study.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 5","pages":"1113 - 1159"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A knowledge compilation perspective on queries and transformations for belief tracking\",\"authors\":\"Alexandre Niveau,&nbsp;Hector Palacios,&nbsp;Sergej Scheck,&nbsp;Bruno Zanuttini\",\"doi\":\"10.1007/s10472-023-09908-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nondeterministic planning is the process of computing plans or policies of actions achieving given goals, when there is nondeterministic uncertainty about the initial state and/or the outcomes of actions. This process encompasses many precise computational problems, from classical planning, where there is no uncertainty, to contingent planning, where the agent has access to observations about the current state. Fundamental to these problems is belief tracking, that is, obtaining information about the current state after a history of actions and observations. At an abstract level, belief tracking can be seen as maintaining and querying the current belief state, that is, the set of states consistent with the history. We take a knowledge compilation perspective on these processes, by defining the queries and transformations which pertain to belief tracking. We study them for propositional domains, considering a number of representations for belief states, actions, observations, and goals. In particular, for belief states, we consider explicit propositional representations with and without auxiliary variables, as well as implicit representations by the history itself; and for actions, we consider propositional action theories as well as ground PDDL and conditional STRIPS. For all combinations, we investigate the complexity of relevant queries (for instance, whether an action is applicable at a belief state) and transformations (for instance, revising a belief state by an observation); we also discuss the relative succinctness of representations. Though many results show an expected tradeoff between succinctness and tractability, we identify some interesting combinations. We also discuss the choice of representations by existing planners in light of our study.</p></div>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"92 5\",\"pages\":\"1113 - 1159\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10472-023-09908-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09908-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

非确定规划是指在初始状态和/或行动结果存在非确定不确定性的情况下,计算实现给定目标的行动规划或策略的过程。这一过程包含许多精确的计算问题,从不确定性的经典规划,到代理可获得当前状态观察结果的权变规划。这些问题的基础是信念跟踪,即在行动和观察历史之后获取有关当前状态的信息。在抽象的层面上,信念跟踪可以看作是维护和查询当前的信念状态,即与历史一致的状态集合。我们从知识编译的角度来看待这些过程,定义了与信念跟踪相关的查询和转换。我们针对命题域对它们进行了研究,并考虑了信念状态、行动、观察和目标的多种表征。具体来说,对于信念状态,我们考虑了有辅助变量和无辅助变量的显式命题表示法,以及历史本身的隐式表示法;对于行动,我们考虑了命题行动理论以及地面 PDDL 和条件 STRIPS。对于所有组合,我们研究了相关查询(例如,某个行动是否适用于某个信念状态)和转换(例如,通过观察修正信念状态)的复杂性;我们还讨论了表征的相对简洁性。尽管许多结果表明简洁性和可操作性之间存在预期的折衷,但我们发现了一些有趣的组合。我们还根据我们的研究讨论了现有规划器对表征的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A knowledge compilation perspective on queries and transformations for belief tracking

Nondeterministic planning is the process of computing plans or policies of actions achieving given goals, when there is nondeterministic uncertainty about the initial state and/or the outcomes of actions. This process encompasses many precise computational problems, from classical planning, where there is no uncertainty, to contingent planning, where the agent has access to observations about the current state. Fundamental to these problems is belief tracking, that is, obtaining information about the current state after a history of actions and observations. At an abstract level, belief tracking can be seen as maintaining and querying the current belief state, that is, the set of states consistent with the history. We take a knowledge compilation perspective on these processes, by defining the queries and transformations which pertain to belief tracking. We study them for propositional domains, considering a number of representations for belief states, actions, observations, and goals. In particular, for belief states, we consider explicit propositional representations with and without auxiliary variables, as well as implicit representations by the history itself; and for actions, we consider propositional action theories as well as ground PDDL and conditional STRIPS. For all combinations, we investigate the complexity of relevant queries (for instance, whether an action is applicable at a belief state) and transformations (for instance, revising a belief state by an observation); we also discuss the relative succinctness of representations. Though many results show an expected tradeoff between succinctness and tractability, we identify some interesting combinations. We also discuss the choice of representations by existing planners in light of our study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
期刊最新文献
Common equivalence and size of forgetting from Horn formulae Time-penalised trees (TpT): introducing a new tree-based data mining algorithm for time-varying covariates Conformal test martingales for hypergraphical models Costly information providing in binary contests Advances in preference handling: foreword
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1