J. Joe Hull , Chan C. Heu , Roni J. Gross, Dannialle M. LeRoy, Inana X. Schutze, Daniel Langhorst, Jeffrey A. Fabrick, Colin S. Brent
{"title":"双性对 Lygus hesperus 的男性化而非女性化至关重要","authors":"J. Joe Hull , Chan C. Heu , Roni J. Gross, Dannialle M. LeRoy, Inana X. Schutze, Daniel Langhorst, Jeffrey A. Fabrick, Colin S. Brent","doi":"10.1016/j.ibmb.2024.104085","DOIUrl":null,"url":null,"abstract":"<div><p>In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with <em>doublesex</em> (<em>dsx</em>) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized <em>dsx</em> in <em>Lygus hesperus</em> (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for <em>L. hesperus dsx</em> (<em>Lhdsx</em>) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that <em>Lhdsx</em> is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of <em>Lhdsx</em> only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of <em>Lhdsx</em> in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated <em>vitellogenin</em> transcripts. Gene knockout of <em>Lhdsx</em> by CRISPR/Cas9 editing yielded only females in G<sub>0</sub> and strongly biased heterozygous G<sub>1</sub> offspring to females with the few surviving males showing severely impaired genital development. These results indicate that <em>L. hesperus</em> male development requires <em>Lhdsx</em>, whereas female development proceeds via a basal pathway that functions independently of <em>dsx</em>. A fundamental understanding of sex differentiation in <em>L. hesperus</em> could be important for future gene-based management strategies of this important agricultural pest.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"166 ","pages":"Article 104085"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doublesex is essential for masculinization but not feminization in Lygus hesperus\",\"authors\":\"J. Joe Hull , Chan C. Heu , Roni J. Gross, Dannialle M. LeRoy, Inana X. Schutze, Daniel Langhorst, Jeffrey A. Fabrick, Colin S. Brent\",\"doi\":\"10.1016/j.ibmb.2024.104085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with <em>doublesex</em> (<em>dsx</em>) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized <em>dsx</em> in <em>Lygus hesperus</em> (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for <em>L. hesperus dsx</em> (<em>Lhdsx</em>) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that <em>Lhdsx</em> is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of <em>Lhdsx</em> only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of <em>Lhdsx</em> in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated <em>vitellogenin</em> transcripts. Gene knockout of <em>Lhdsx</em> by CRISPR/Cas9 editing yielded only females in G<sub>0</sub> and strongly biased heterozygous G<sub>1</sub> offspring to females with the few surviving males showing severely impaired genital development. These results indicate that <em>L. hesperus</em> male development requires <em>Lhdsx</em>, whereas female development proceeds via a basal pathway that functions independently of <em>dsx</em>. A fundamental understanding of sex differentiation in <em>L. hesperus</em> could be important for future gene-based management strategies of this important agricultural pest.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"166 \",\"pages\":\"Article 104085\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096517482400016X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096517482400016X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Doublesex is essential for masculinization but not feminization in Lygus hesperus
In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.