Esther Rubio-Portillo, Sophia Robertson, Josefa Antón
{"title":"珊瑚粘液是针对弧菌病原体的噬菌体的储存库","authors":"Esther Rubio-Portillo, Sophia Robertson, Josefa Antón","doi":"10.1093/ismejo/wrae017","DOIUrl":null,"url":null,"abstract":"The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral’s defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei, utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coral mucus as a reservoir of bacteriophages targeting Vibrio pathogens\",\"authors\":\"Esther Rubio-Portillo, Sophia Robertson, Josefa Antón\",\"doi\":\"10.1093/ismejo/wrae017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral’s defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei, utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coral mucus as a reservoir of bacteriophages targeting Vibrio pathogens
The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral’s defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei, utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.