{"title":"支持非凸的非负掩码收敛双变量细分方案","authors":"Li Cheng","doi":"10.1016/j.acha.2024.101636","DOIUrl":null,"url":null,"abstract":"<div><p>Recently we have characterized the convergence of bivariate subdivision scheme with nonnegative mask whose support is convex by means of the so-called connectivity of a square matrix, which is derived by a given mask. The convergence in this case can be checked in linear time with respected to the size of a square matrix. This paper will focus on the characterization of such schemes with non-convex supports.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101636"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergent bivariate subdivision scheme with nonnegative mask whose support is non-convex\",\"authors\":\"Li Cheng\",\"doi\":\"10.1016/j.acha.2024.101636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently we have characterized the convergence of bivariate subdivision scheme with nonnegative mask whose support is convex by means of the so-called connectivity of a square matrix, which is derived by a given mask. The convergence in this case can be checked in linear time with respected to the size of a square matrix. This paper will focus on the characterization of such schemes with non-convex supports.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"70 \",\"pages\":\"Article 101636\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000137\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Convergent bivariate subdivision scheme with nonnegative mask whose support is non-convex
Recently we have characterized the convergence of bivariate subdivision scheme with nonnegative mask whose support is convex by means of the so-called connectivity of a square matrix, which is derived by a given mask. The convergence in this case can be checked in linear time with respected to the size of a square matrix. This paper will focus on the characterization of such schemes with non-convex supports.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.