Chao Yu , Xuying Lu , Deli Sun , Mengnan Chu , Xueyun Li , Qun Li
{"title":"河宽和水深是新安江流域越冬斑嘴鸭昼间活动能量消耗分配的关键因素","authors":"Chao Yu , Xuying Lu , Deli Sun , Mengnan Chu , Xueyun Li , Qun Li","doi":"10.1016/j.avrs.2024.100159","DOIUrl":null,"url":null,"abstract":"<div><p>Rivers are important habitats for wintering waterbirds. However, they are easily influenced by natural and human activities. An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior. The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time, which in turn increases food intake and helps maintain a constant energy balance. However, it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging. In this study, the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck (<em>Anas poecilorhyncha</em>) in two rivers in the Xin'an River Basin from October 2021 to March 2022. The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated. The results showed that foraging accounted for the highest percentage of time and energy expenditure. Additionally, foraging decreased in the disturbed environment than that in the normal environment. Resting behavior showed the opposite trend, while other behaviors were similar in both environments. The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment, with decreased foraging and resting time percentage and increased behaviors related to immediate safety (swimming and alert) and comfort. These results oppose the compensatory foraging hypothesis in favor of increased security. The optimal diurnal energy expenditure model included river width and water depth, which had a positive relationship; an increase in either of these two factors resulted in an increase in energy expenditure. This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions. Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2053716624000021/pdfft?md5=71179c63115603940e0957fac02c644d&pid=1-s2.0-S2053716624000021-main.pdf","citationCount":"0","resultStr":"{\"title\":\"River width and depth as key factors of diurnal activity energy expenditure allocation for wintering Spot-billed Ducks in the Xin'an River Basin\",\"authors\":\"Chao Yu , Xuying Lu , Deli Sun , Mengnan Chu , Xueyun Li , Qun Li\",\"doi\":\"10.1016/j.avrs.2024.100159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rivers are important habitats for wintering waterbirds. However, they are easily influenced by natural and human activities. An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior. The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time, which in turn increases food intake and helps maintain a constant energy balance. However, it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging. In this study, the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck (<em>Anas poecilorhyncha</em>) in two rivers in the Xin'an River Basin from October 2021 to March 2022. The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated. The results showed that foraging accounted for the highest percentage of time and energy expenditure. Additionally, foraging decreased in the disturbed environment than that in the normal environment. Resting behavior showed the opposite trend, while other behaviors were similar in both environments. The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment, with decreased foraging and resting time percentage and increased behaviors related to immediate safety (swimming and alert) and comfort. These results oppose the compensatory foraging hypothesis in favor of increased security. The optimal diurnal energy expenditure model included river width and water depth, which had a positive relationship; an increase in either of these two factors resulted in an increase in energy expenditure. This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions. Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2053716624000021/pdfft?md5=71179c63115603940e0957fac02c644d&pid=1-s2.0-S2053716624000021-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2053716624000021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2053716624000021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
River width and depth as key factors of diurnal activity energy expenditure allocation for wintering Spot-billed Ducks in the Xin'an River Basin
Rivers are important habitats for wintering waterbirds. However, they are easily influenced by natural and human activities. An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior. The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time, which in turn increases food intake and helps maintain a constant energy balance. However, it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging. In this study, the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck (Anas poecilorhyncha) in two rivers in the Xin'an River Basin from October 2021 to March 2022. The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated. The results showed that foraging accounted for the highest percentage of time and energy expenditure. Additionally, foraging decreased in the disturbed environment than that in the normal environment. Resting behavior showed the opposite trend, while other behaviors were similar in both environments. The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment, with decreased foraging and resting time percentage and increased behaviors related to immediate safety (swimming and alert) and comfort. These results oppose the compensatory foraging hypothesis in favor of increased security. The optimal diurnal energy expenditure model included river width and water depth, which had a positive relationship; an increase in either of these two factors resulted in an increase in energy expenditure. This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions. Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.