三维切片土梁模型,用于在软土地基上使用管顶法进行隧道沉降预测

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL Frontiers of Structural and Civil Engineering Pub Date : 2024-02-02 DOI:10.1007/s11709-023-0038-2
Yu Diao, Yiming Xue, Weiqiang Pan, Gang Zheng, Ying Zhang, Dawei Zhang, Haizuo Zhou, Tianqi Zhang
{"title":"三维切片土梁模型,用于在软土地基上使用管顶法进行隧道沉降预测","authors":"Yu Diao, Yiming Xue, Weiqiang Pan, Gang Zheng, Ying Zhang, Dawei Zhang, Haizuo Zhou, Tianqi Zhang","doi":"10.1007/s11709-023-0038-2","DOIUrl":null,"url":null,"abstract":"<p>The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel, especially under good ground conditions. However, the pipe roofing method has rarely been applied in soft ground, where the prediction and control of the ground settlement play important roles. This study proposes a sliced-soil–beam (SSB) model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground. The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics. As part of this work, the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground. The pipe roofing system was simplified to a three-dimensional Winkler beam to consider the interaction between the soil and pipe roofing. The model was verified in a case study conducted in Shanghai, China, in which it provided the efficient and accurate prediction of settlement. Finally, the parameters affecting the ground settlement were analyzed. It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"66 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D sliced-soil–beam model for settlement prediction of tunnelling using the pipe roofing method in soft ground\",\"authors\":\"Yu Diao, Yiming Xue, Weiqiang Pan, Gang Zheng, Ying Zhang, Dawei Zhang, Haizuo Zhou, Tianqi Zhang\",\"doi\":\"10.1007/s11709-023-0038-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel, especially under good ground conditions. However, the pipe roofing method has rarely been applied in soft ground, where the prediction and control of the ground settlement play important roles. This study proposes a sliced-soil–beam (SSB) model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground. The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics. As part of this work, the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground. The pipe roofing system was simplified to a three-dimensional Winkler beam to consider the interaction between the soil and pipe roofing. The model was verified in a case study conducted in Shanghai, China, in which it provided the efficient and accurate prediction of settlement. Finally, the parameters affecting the ground settlement were analyzed. It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-023-0038-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0038-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

管顶法在隧道施工中得到广泛应用,因为它可以实现灵活的断面形状和较大的隧道断面面积,尤其是在良好的地基条件下。然而,管顶法很少应用于软土地基,而软土地基对地面沉降的预测和控制起着重要作用。本研究提出了一个土梁切片(SSB)模型,用于预测在软土地基上使用管道顶管法开挖隧道引起的地面沉降。该模型由基于虚功原理的切片土模块和基于结构力学的梁模块组成。作为这项工作的一部分,对方形截面隧道的 Peck 公式进行了修改,并采用该公式构建了软土地基的变形机制。管顶系统被简化为三维温克勒梁,以考虑土壤与管顶之间的相互作用。该模型在中国上海进行的案例研究中得到了验证,并提供了高效、准确的沉降预测。最后,对影响地面沉降的参数进行了分析。结果表明,开挖土壤的刚度和钢支撑是减少地面沉降的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 3D sliced-soil–beam model for settlement prediction of tunnelling using the pipe roofing method in soft ground

The pipe roofing method is widely used in tunnel construction because it can realize a flexible section shape and a large section area of the tunnel, especially under good ground conditions. However, the pipe roofing method has rarely been applied in soft ground, where the prediction and control of the ground settlement play important roles. This study proposes a sliced-soil–beam (SSB) model to predict the settlement of ground due to tunnelling using the pipe roofing method in soft ground. The model comprises a sliced-soil module based on the virtual work principle and a beam module based on structural mechanics. As part of this work, the Peck formula was modified for a square-section tunnel and adopted to construct a deformation mechanism of soft ground. The pipe roofing system was simplified to a three-dimensional Winkler beam to consider the interaction between the soil and pipe roofing. The model was verified in a case study conducted in Shanghai, China, in which it provided the efficient and accurate prediction of settlement. Finally, the parameters affecting the ground settlement were analyzed. It was clarified that the stiffness of the excavated soil and the steel support are the key factors in reducing ground settlement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
期刊最新文献
An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations Bibliographic survey and comprehensive review on mechanical and durability properties of microorganism based self-healing concrete Seismic response of pile-supported structures considering the coupling of inertial and kinematic interactions in different soil sites An isogeometric approach for nonlocal bending and free oscillation of magneto-electro-elastic functionally graded nanobeam with elastic constraints Shaking table test on a tunnel-group metro station in rock site under harmonic excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1