ILC 驱动的集成 MIMO 软机器人系统控制增强功能

IF 2.3 4区 计算机科学 Q3 ROBOTICS Intelligent Service Robotics Pub Date : 2024-02-02 DOI:10.1007/s11370-024-00511-y
Eun Jeong Song, Seung Guk Baek, Dong Jun Oh, Ji Min Beak, Ja Choon Koo
{"title":"ILC 驱动的集成 MIMO 软机器人系统控制增强功能","authors":"Eun Jeong Song, Seung Guk Baek, Dong Jun Oh, Ji Min Beak, Ja Choon Koo","doi":"10.1007/s11370-024-00511-y","DOIUrl":null,"url":null,"abstract":"<p>This study presents a methodology employing Iterative Learning Control (ILC) to enhance the control performance of soft grippers equipped with multiple curvatures and variable stiffness. ILC is a learning-based control approach that progressively reduces errors in repetitive tasks, known for delivering superior performance in complex systems. In the context of the increasing utilization of robotic technology across various industries, the control technology of soft robots, especially soft grippers with multiple curvatures and variable stiffness, is a crucial issue. While prior research has focused on single-curvature and single-input single-output (SISO) systems, this study addresses the intricate control problem of multi-input multi-output (MIMO) soft gripper systems capable of multiple curvatures. It also proposes an enhanced design for soft grippers with multiple curvatures and variable stiffness while highlighting the potential of ILC for enhancing control performance.\n</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ILC-driven control enhancement for integrated MIMO soft robotic system\",\"authors\":\"Eun Jeong Song, Seung Guk Baek, Dong Jun Oh, Ji Min Beak, Ja Choon Koo\",\"doi\":\"10.1007/s11370-024-00511-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a methodology employing Iterative Learning Control (ILC) to enhance the control performance of soft grippers equipped with multiple curvatures and variable stiffness. ILC is a learning-based control approach that progressively reduces errors in repetitive tasks, known for delivering superior performance in complex systems. In the context of the increasing utilization of robotic technology across various industries, the control technology of soft robots, especially soft grippers with multiple curvatures and variable stiffness, is a crucial issue. While prior research has focused on single-curvature and single-input single-output (SISO) systems, this study addresses the intricate control problem of multi-input multi-output (MIMO) soft gripper systems capable of multiple curvatures. It also proposes an enhanced design for soft grippers with multiple curvatures and variable stiffness while highlighting the potential of ILC for enhancing control performance.\\n</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-024-00511-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00511-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种采用迭代学习控制(ILC)的方法,以提高配备多曲率和可变刚度的软抓手的控制性能。ILC 是一种基于学习的控制方法,可逐步减少重复性任务中的错误,以在复杂系统中提供卓越性能而著称。在各行各业越来越多地使用机器人技术的背景下,软体机器人的控制技术,尤其是具有多曲率和可变刚度的软体抓手的控制技术,是一个至关重要的问题。以往的研究主要集中在单曲率和单输入单输出(SISO)系统上,而本研究解决的是具有多曲率的多输入多输出(MIMO)软抓手系统的复杂控制问题。它还提出了一种针对具有多曲率和可变刚度的软抓手的增强型设计,同时强调了 ILC 在提高控制性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ILC-driven control enhancement for integrated MIMO soft robotic system

This study presents a methodology employing Iterative Learning Control (ILC) to enhance the control performance of soft grippers equipped with multiple curvatures and variable stiffness. ILC is a learning-based control approach that progressively reduces errors in repetitive tasks, known for delivering superior performance in complex systems. In the context of the increasing utilization of robotic technology across various industries, the control technology of soft robots, especially soft grippers with multiple curvatures and variable stiffness, is a crucial issue. While prior research has focused on single-curvature and single-input single-output (SISO) systems, this study addresses the intricate control problem of multi-input multi-output (MIMO) soft gripper systems capable of multiple curvatures. It also proposes an enhanced design for soft grippers with multiple curvatures and variable stiffness while highlighting the potential of ILC for enhancing control performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
4.00%
发文量
46
期刊介绍: The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).
期刊最新文献
Design, simulation, and experimental evaluation of a light weight, and wearable cable driven ForeWrist exoskeleton robot for assistance and rehabilitation Vision-based human–machine interface for a robotic exoskeleton glove designed for patients with brachial plexus injuries HAC-based adaptive combined pick-up path optimization strategy for intelligent warehouse A survey on integration of large language models with intelligent robots A “head-like” component of a terrestrial robot promotes anxiety-like and defensive behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1