{"title":"拉斯塔尔引力中的解耦带电各向异性球面解","authors":"M. Sharif , M. Sallah","doi":"10.1016/j.newast.2024.102198","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses the gravitational decoupling through the minimal geometric deformation approach and extends a known isotropic solution for a self-gravitating interior to two types of anisotropic spherical solutions in Rastall gravity in the presence of electromagnetic field<span>. By deforming only the radial metric component, the field equations are decoupled into two sets, the first of which corresponds to an isotropic distribution of matter while the second set contains the anisotropic source. We obtain a solution of the first set by employing the charged isotropic Finch-Skea ansatz, whereas a solution for the second set is obtained by adopting two mimic constraints on the pressure and density. The matching conditions at the stellar surface<span> are explored with the exterior geometry given by the deformed Reissner–Nordström spacetime. For the two fixed values of the Rastall and charge parameters, we investigate physical features of both solutions through graphical analysis of the energy conditions, equation of state parameters, surface redshift and compactness function. The stability of both solutions is also studied through the Herrera cracking approach and causality condition. We deduce that while both solutions are physically viable, only the solution corresponding to the pressure-like constraint is stable.</span></span></p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"109 ","pages":"Article 102198"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupled charged anisotropic spherical solutions in Rastall gravity\",\"authors\":\"M. Sharif , M. Sallah\",\"doi\":\"10.1016/j.newast.2024.102198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper uses the gravitational decoupling through the minimal geometric deformation approach and extends a known isotropic solution for a self-gravitating interior to two types of anisotropic spherical solutions in Rastall gravity in the presence of electromagnetic field<span>. By deforming only the radial metric component, the field equations are decoupled into two sets, the first of which corresponds to an isotropic distribution of matter while the second set contains the anisotropic source. We obtain a solution of the first set by employing the charged isotropic Finch-Skea ansatz, whereas a solution for the second set is obtained by adopting two mimic constraints on the pressure and density. The matching conditions at the stellar surface<span> are explored with the exterior geometry given by the deformed Reissner–Nordström spacetime. For the two fixed values of the Rastall and charge parameters, we investigate physical features of both solutions through graphical analysis of the energy conditions, equation of state parameters, surface redshift and compactness function. The stability of both solutions is also studied through the Herrera cracking approach and causality condition. We deduce that while both solutions are physically viable, only the solution corresponding to the pressure-like constraint is stable.</span></span></p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"109 \",\"pages\":\"Article 102198\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624000125\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000125","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Decoupled charged anisotropic spherical solutions in Rastall gravity
This paper uses the gravitational decoupling through the minimal geometric deformation approach and extends a known isotropic solution for a self-gravitating interior to two types of anisotropic spherical solutions in Rastall gravity in the presence of electromagnetic field. By deforming only the radial metric component, the field equations are decoupled into two sets, the first of which corresponds to an isotropic distribution of matter while the second set contains the anisotropic source. We obtain a solution of the first set by employing the charged isotropic Finch-Skea ansatz, whereas a solution for the second set is obtained by adopting two mimic constraints on the pressure and density. The matching conditions at the stellar surface are explored with the exterior geometry given by the deformed Reissner–Nordström spacetime. For the two fixed values of the Rastall and charge parameters, we investigate physical features of both solutions through graphical analysis of the energy conditions, equation of state parameters, surface redshift and compactness function. The stability of both solutions is also studied through the Herrera cracking approach and causality condition. We deduce that while both solutions are physically viable, only the solution corresponding to the pressure-like constraint is stable.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.