Haidong Shen, Jiwei Du, Kun Yan, Yanbin Liu, Jinbao Chen
{"title":"基于 VGESO 的四旋翼无人飞行器有限时间容错跟踪控制","authors":"Haidong Shen, Jiwei Du, Kun Yan, Yanbin Liu, Jinbao Chen","doi":"10.1155/2024/2541698","DOIUrl":null,"url":null,"abstract":"Based on the variable gain extended state observer, a finite-time fault-tolerant control strategy is developed for the quadrotor unmanned aerial vehicle with actuator faults and external disturbances. Firstly, a novel variable gain extended state observer is designed to estimate the unknown external disturbances, which mitigates the initial peaking phenomenon existing in traditional extended state observer-based methods. Meanwhile, the neural networks are applied to accurately approximate unknown couplings online. Moreover, with the help of the projection operator technique, the unknown actuator faults are observed in real time. Combined with the backstepping framework, the finite-time robust fault-tolerant control scheme is constructed and the stability is strictly proved via Lyapunov’s theory. Finally, the validity of the developed control scheme is demonstrated through numerical simulations.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VGESO-Based Finite-Time Fault-Tolerant Tracking Control for Quadrotor Unmanned Aerial Vehicle\",\"authors\":\"Haidong Shen, Jiwei Du, Kun Yan, Yanbin Liu, Jinbao Chen\",\"doi\":\"10.1155/2024/2541698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the variable gain extended state observer, a finite-time fault-tolerant control strategy is developed for the quadrotor unmanned aerial vehicle with actuator faults and external disturbances. Firstly, a novel variable gain extended state observer is designed to estimate the unknown external disturbances, which mitigates the initial peaking phenomenon existing in traditional extended state observer-based methods. Meanwhile, the neural networks are applied to accurately approximate unknown couplings online. Moreover, with the help of the projection operator technique, the unknown actuator faults are observed in real time. Combined with the backstepping framework, the finite-time robust fault-tolerant control scheme is constructed and the stability is strictly proved via Lyapunov’s theory. Finally, the validity of the developed control scheme is demonstrated through numerical simulations.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2541698\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2541698","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
VGESO-Based Finite-Time Fault-Tolerant Tracking Control for Quadrotor Unmanned Aerial Vehicle
Based on the variable gain extended state observer, a finite-time fault-tolerant control strategy is developed for the quadrotor unmanned aerial vehicle with actuator faults and external disturbances. Firstly, a novel variable gain extended state observer is designed to estimate the unknown external disturbances, which mitigates the initial peaking phenomenon existing in traditional extended state observer-based methods. Meanwhile, the neural networks are applied to accurately approximate unknown couplings online. Moreover, with the help of the projection operator technique, the unknown actuator faults are observed in real time. Combined with the backstepping framework, the finite-time robust fault-tolerant control scheme is constructed and the stability is strictly proved via Lyapunov’s theory. Finally, the validity of the developed control scheme is demonstrated through numerical simulations.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.