{"title":"利用图神经网络检测深度伪造视频的新方法","authors":"","doi":"10.1186/s40537-024-00884-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Deep fake technology has emerged as a double-edged sword in the digital world. While it holds potential for legitimate uses, it can also be exploited to manipulate video content, causing severe social and security concerns. The research gap lies in the fact that traditional deep fake detection methods, such as visual quality analysis or inconsistency detection, need help to keep up with the rapidly advancing technology used to create deep fakes. That means there's a need for more sophisticated detection techniques. This paper introduces an enhanced approach for detecting deep fake videos using graph neural network (GNN). The proposed method splits the detection process into two phases: a mini-batch graph convolution network stream four-block CNN stream comprising Convolution, Batch Normalization, and Activation function. The final step is a flattening operation, which is essential for connecting the convolutional layers to the dense layer. The fusion of these two phases is performed using three different fusion networks: FuNet-A (additive fusion), FuNet-M (element-wise multiplicative fusion), and FuNet-C (concatenation fusion). The paper further evaluates the proposed model on different datasets, where it achieved an impressive training and validation accuracy of 99.3% after 30 epochs.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"14 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach for detecting deep fake videos using graph neural network\",\"authors\":\"\",\"doi\":\"10.1186/s40537-024-00884-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Deep fake technology has emerged as a double-edged sword in the digital world. While it holds potential for legitimate uses, it can also be exploited to manipulate video content, causing severe social and security concerns. The research gap lies in the fact that traditional deep fake detection methods, such as visual quality analysis or inconsistency detection, need help to keep up with the rapidly advancing technology used to create deep fakes. That means there's a need for more sophisticated detection techniques. This paper introduces an enhanced approach for detecting deep fake videos using graph neural network (GNN). The proposed method splits the detection process into two phases: a mini-batch graph convolution network stream four-block CNN stream comprising Convolution, Batch Normalization, and Activation function. The final step is a flattening operation, which is essential for connecting the convolutional layers to the dense layer. The fusion of these two phases is performed using three different fusion networks: FuNet-A (additive fusion), FuNet-M (element-wise multiplicative fusion), and FuNet-C (concatenation fusion). The paper further evaluates the proposed model on different datasets, where it achieved an impressive training and validation accuracy of 99.3% after 30 epochs.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00884-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00884-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A novel approach for detecting deep fake videos using graph neural network
Abstract
Deep fake technology has emerged as a double-edged sword in the digital world. While it holds potential for legitimate uses, it can also be exploited to manipulate video content, causing severe social and security concerns. The research gap lies in the fact that traditional deep fake detection methods, such as visual quality analysis or inconsistency detection, need help to keep up with the rapidly advancing technology used to create deep fakes. That means there's a need for more sophisticated detection techniques. This paper introduces an enhanced approach for detecting deep fake videos using graph neural network (GNN). The proposed method splits the detection process into two phases: a mini-batch graph convolution network stream four-block CNN stream comprising Convolution, Batch Normalization, and Activation function. The final step is a flattening operation, which is essential for connecting the convolutional layers to the dense layer. The fusion of these two phases is performed using three different fusion networks: FuNet-A (additive fusion), FuNet-M (element-wise multiplicative fusion), and FuNet-C (concatenation fusion). The paper further evaluates the proposed model on different datasets, where it achieved an impressive training and validation accuracy of 99.3% after 30 epochs.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.