{"title":"采用保守艾伦-卡恩模型的多相晶格玻尔兹曼流量求解器,用于模拟高密度比流动","authors":"Z. Chen, Y. H. Sun","doi":"10.1002/fld.5265","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the Allen-Cahn-Multiphase lattice Boltzmann flux solver (AC-MLBFS) is proposed as a new and effective numerical simulation method for multiphase flows with high density ratios. The MLBFS resolves the macroscopic governing equations with the finite volume method and reconstructs numerical fluxes on the cell interface from local solutions to the lattice Boltzmann equation, which combines the advantages of conventional Navier–Stokes solvers and lattice Boltzmann methods for simulating incompressible multiphase flows while alleviating their limitations. Previous MLBFS-based multiphase solvers performed poorly in mass conservation, which might be caused by the excessive numerical diffusion in the Cahn-Hilliard (CH) model used as the interface tracking algorithm. To resolve this problem, the present method proposes using the conservative Allen-Cahn (AC) model as the interfacial tracking algorithm, which can ease the numerical implementation by removing high order derivative terms and alleviate mass leakage by enforcing local mass conservation in the physical model. Numerical validations will be carried out through benchmark tests at high density ratios and in extreme conditions with large Reynolds or Weber numbers. Through these examples, the accuracy and robustness as well as the mass conservation characteristics of the proposed method are demonstrated.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"701-718"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphase lattice Boltzmann flux solver with conservative Allen-Cahn model for modeling high-density-ratio flows\",\"authors\":\"Z. Chen, Y. H. Sun\",\"doi\":\"10.1002/fld.5265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the Allen-Cahn-Multiphase lattice Boltzmann flux solver (AC-MLBFS) is proposed as a new and effective numerical simulation method for multiphase flows with high density ratios. The MLBFS resolves the macroscopic governing equations with the finite volume method and reconstructs numerical fluxes on the cell interface from local solutions to the lattice Boltzmann equation, which combines the advantages of conventional Navier–Stokes solvers and lattice Boltzmann methods for simulating incompressible multiphase flows while alleviating their limitations. Previous MLBFS-based multiphase solvers performed poorly in mass conservation, which might be caused by the excessive numerical diffusion in the Cahn-Hilliard (CH) model used as the interface tracking algorithm. To resolve this problem, the present method proposes using the conservative Allen-Cahn (AC) model as the interfacial tracking algorithm, which can ease the numerical implementation by removing high order derivative terms and alleviate mass leakage by enforcing local mass conservation in the physical model. Numerical validations will be carried out through benchmark tests at high density ratios and in extreme conditions with large Reynolds or Weber numbers. Through these examples, the accuracy and robustness as well as the mass conservation characteristics of the proposed method are demonstrated.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 5\",\"pages\":\"701-718\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5265\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5265","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multiphase lattice Boltzmann flux solver with conservative Allen-Cahn model for modeling high-density-ratio flows
In this paper, the Allen-Cahn-Multiphase lattice Boltzmann flux solver (AC-MLBFS) is proposed as a new and effective numerical simulation method for multiphase flows with high density ratios. The MLBFS resolves the macroscopic governing equations with the finite volume method and reconstructs numerical fluxes on the cell interface from local solutions to the lattice Boltzmann equation, which combines the advantages of conventional Navier–Stokes solvers and lattice Boltzmann methods for simulating incompressible multiphase flows while alleviating their limitations. Previous MLBFS-based multiphase solvers performed poorly in mass conservation, which might be caused by the excessive numerical diffusion in the Cahn-Hilliard (CH) model used as the interface tracking algorithm. To resolve this problem, the present method proposes using the conservative Allen-Cahn (AC) model as the interfacial tracking algorithm, which can ease the numerical implementation by removing high order derivative terms and alleviate mass leakage by enforcing local mass conservation in the physical model. Numerical validations will be carried out through benchmark tests at high density ratios and in extreme conditions with large Reynolds or Weber numbers. Through these examples, the accuracy and robustness as well as the mass conservation characteristics of the proposed method are demonstrated.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.