Camryn Petersen , Manuela Buonanno , Lisa Guan , Akemi Hinzer , Joshua Urbano , Raabia Hashmi , Igor Shuryak , Ceth Parker , David Welch
{"title":"嗜极生物对远紫外光的敏感性,以减少航天器组装设施中的生物负载","authors":"Camryn Petersen , Manuela Buonanno , Lisa Guan , Akemi Hinzer , Joshua Urbano , Raabia Hashmi , Igor Shuryak , Ceth Parker , David Welch","doi":"10.1016/j.lssr.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200–230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, <em>Deinococcus radiodurans</em>, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm<sup>2</sup> required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, <em>Bacillus pumilus</em> spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D<sub>90</sub> of 6.8 mJ/cm<sup>2</sup>). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"41 ","pages":"Pages 56-63"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214552424000166/pdfft?md5=5e1f3b02f4226ad29cef5dddb9d3d7c4&pid=1-s2.0-S2214552424000166-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Susceptibility of extremophiles to far-UVC light for bioburden reduction in spacecraft assembly facilities\",\"authors\":\"Camryn Petersen , Manuela Buonanno , Lisa Guan , Akemi Hinzer , Joshua Urbano , Raabia Hashmi , Igor Shuryak , Ceth Parker , David Welch\",\"doi\":\"10.1016/j.lssr.2024.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200–230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, <em>Deinococcus radiodurans</em>, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm<sup>2</sup> required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, <em>Bacillus pumilus</em> spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D<sub>90</sub> of 6.8 mJ/cm<sup>2</sup>). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.</p></div>\",\"PeriodicalId\":18029,\"journal\":{\"name\":\"Life Sciences in Space Research\",\"volume\":\"41 \",\"pages\":\"Pages 56-63\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214552424000166/pdfft?md5=5e1f3b02f4226ad29cef5dddb9d3d7c4&pid=1-s2.0-S2214552424000166-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Sciences in Space Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214552424000166\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424000166","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Susceptibility of extremophiles to far-UVC light for bioburden reduction in spacecraft assembly facilities
The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200–230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, Deinococcus radiodurans, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm2 required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, Bacillus pumilus spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D90 of 6.8 mJ/cm2). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.
期刊介绍:
Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research.
Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.