利用改进的图神经网络模型确定建筑足迹的最佳泛化算子

IF 3.3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Geocarto International Pub Date : 2024-01-30 DOI:10.1080/10106049.2024.2306265
Xinyu Niu, Haizhong Qian, Xiao Wang, Limin Xie, Longfei Cui
{"title":"利用改进的图神经网络模型确定建筑足迹的最佳泛化算子","authors":"Xinyu Niu, Haizhong Qian, Xiao Wang, Limin Xie, Longfei Cui","doi":"10.1080/10106049.2024.2306265","DOIUrl":null,"url":null,"abstract":"Determining the optimal generalization operators of city buildings is a crucial step during the building generalization process and an important aspect of realizing cross-scale updating of map data...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"22 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the optimal generalization operators for building footprints using an improved graph neural network model\",\"authors\":\"Xinyu Niu, Haizhong Qian, Xiao Wang, Limin Xie, Longfei Cui\",\"doi\":\"10.1080/10106049.2024.2306265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the optimal generalization operators of city buildings is a crucial step during the building generalization process and an important aspect of realizing cross-scale updating of map data...\",\"PeriodicalId\":12532,\"journal\":{\"name\":\"Geocarto International\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geocarto International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/10106049.2024.2306265\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geocarto International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/10106049.2024.2306265","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

确定城市建筑物的最佳泛化算子是建筑物泛化过程中的关键步骤,也是实现地图数据跨尺度更新的重要方面...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining the optimal generalization operators for building footprints using an improved graph neural network model
Determining the optimal generalization operators of city buildings is a crucial step during the building generalization process and an important aspect of realizing cross-scale updating of map data...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geocarto International
Geocarto International ENVIRONMENTAL SCIENCES-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.30
自引率
13.20%
发文量
407
审稿时长
>12 weeks
期刊介绍: Geocarto International is a professional academic journal serving the world-wide scientific and user community in the fields of remote sensing, GIS, geoscience and environmental sciences. The journal is designed: to promote multidisciplinary research in and application of remote sensing and GIS in geosciences and environmental sciences; to enhance international exchange of information on new developments and applications in the field of remote sensing and GIS and related disciplines; to foster interest in and understanding of science and applications on remote sensing and GIS technologies; and to encourage the publication of timely papers and research results on remote sensing and GIS applications in geosciences and environmental sciences from the world-wide science community. The journal welcomes contributions on the following: precise, illustrated papers on new developments, technologies and applications of remote sensing; research results in remote sensing, GISciences and related disciplines; Reports on new and innovative applications and projects in these areas; and assessment and evaluation of new remote sensing and GIS equipment, software and hardware.
期刊最新文献
A novel deep learning model for extracting arable land from high-resolution remote sensing images in hilly areas: a case study in the Sichuan Basin of Southwest China A regional-level spatiotemporal perspective of land use and land cover change impact on forest aboveground biomass in three gorges reservoir region, China Evaluation of urban ecological benefits utilizing vegetated areas metrics in Nanjing, China Modelling topographic influences on vegetation vigour in the Cradle Nature Reserve, Gauteng province, South Africa Integrating dual evaluation and FLUS model for land use simulation and urban growth boundary delineation in production-living-ecology spaces: a case study of Central Harbin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1