计算随机地图静态密度的二次样条投影法

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Communications in Mathematical Sciences Pub Date : 2024-02-01 DOI:10.4310/cms.2024.v22.n2.a9
Azzah Alshekhi, Jiu Ding, Noah Rhee
{"title":"计算随机地图静态密度的二次样条投影法","authors":"Azzah Alshekhi, Jiu Ding, Noah Rhee","doi":"10.4310/cms.2024.v22.n2.a9","DOIUrl":null,"url":null,"abstract":"We propose a quadratic spline projection method that computes stationary densities of random maps with position-dependent probabilities. Using a key variation inequality for the corresponding Markov operator, we prove the norm convergence of the numerical scheme for a family of random maps consisting of the Lasota–Yorke class of interval maps. The numerical experimental results show that the new method improves the $L^1$-norm errors and increases the convergence rate greatly, compared with the previous operator-approximation-based numerical methods for random maps.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"183 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quadratic spline projection method for computing stationary densities of random maps\",\"authors\":\"Azzah Alshekhi, Jiu Ding, Noah Rhee\",\"doi\":\"10.4310/cms.2024.v22.n2.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a quadratic spline projection method that computes stationary densities of random maps with position-dependent probabilities. Using a key variation inequality for the corresponding Markov operator, we prove the norm convergence of the numerical scheme for a family of random maps consisting of the Lasota–Yorke class of interval maps. The numerical experimental results show that the new method improves the $L^1$-norm errors and increases the convergence rate greatly, compared with the previous operator-approximation-based numerical methods for random maps.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n2.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种二次样条线投影法,可以计算随机映射的静态密度,其概率与位置有关。利用相应马尔可夫算子的关键变化不等式,我们证明了由拉索塔-约克类区间图组成的随机图族的数值方案的规范收敛性。数值实验结果表明,与之前基于算子逼近的随机地图数值方法相比,新方法改善了$L^1$正则误差,大大提高了收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quadratic spline projection method for computing stationary densities of random maps
We propose a quadratic spline projection method that computes stationary densities of random maps with position-dependent probabilities. Using a key variation inequality for the corresponding Markov operator, we prove the norm convergence of the numerical scheme for a family of random maps consisting of the Lasota–Yorke class of interval maps. The numerical experimental results show that the new method improves the $L^1$-norm errors and increases the convergence rate greatly, compared with the previous operator-approximation-based numerical methods for random maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
期刊最新文献
Machine learning methods for autonomous ordinary differential equations A note on the relaxation process in a class of non-equilibrium two-phase flow models Global smooth solutions to the two-dimensional axisymmetric Zeldovich-von Neumann-Döring combustion equations with swirl Stability for the 2D Micropolar equations with partial dissipation near Couette flow IMEX variable step-size Runge-Kutta methods for parabolic integro-differential equations with nonsmooth initial data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1