肥胖-自噬-癌症轴:机理认识与治疗前景

IF 12.1 1区 医学 Q1 ONCOLOGY Seminars in cancer biology Pub Date : 2024-02-01 DOI:10.1016/j.semcancer.2024.01.003
Amir Barzegar Behrooz , Marco Cordani , Alessandra Fiore , Massimo Donadelli , Joseph W. Gordon , Daniel J. Klionsky , Saeid Ghavami
{"title":"肥胖-自噬-癌症轴:机理认识与治疗前景","authors":"Amir Barzegar Behrooz ,&nbsp;Marco Cordani ,&nbsp;Alessandra Fiore ,&nbsp;Massimo Donadelli ,&nbsp;Joseph W. Gordon ,&nbsp;Daniel J. Klionsky ,&nbsp;Saeid Ghavami","doi":"10.1016/j.semcancer.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"99 ","pages":"Pages 24-44"},"PeriodicalIF":12.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044579X24000099/pdfft?md5=8b195c978156e3d1e5deac5220e8982f&pid=1-s2.0-S1044579X24000099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives\",\"authors\":\"Amir Barzegar Behrooz ,&nbsp;Marco Cordani ,&nbsp;Alessandra Fiore ,&nbsp;Massimo Donadelli ,&nbsp;Joseph W. Gordon ,&nbsp;Daniel J. Klionsky ,&nbsp;Saeid Ghavami\",\"doi\":\"10.1016/j.semcancer.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.</p></div>\",\"PeriodicalId\":21594,\"journal\":{\"name\":\"Seminars in cancer biology\",\"volume\":\"99 \",\"pages\":\"Pages 24-44\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1044579X24000099/pdfft?md5=8b195c978156e3d1e5deac5220e8982f&pid=1-s2.0-S1044579X24000099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cancer biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044579X24000099\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X24000099","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自噬是一种对细胞稳态至关重要的自我降解过程,在脂肪组织代谢和肿瘤发生中发挥着重要作用。本综述旨在阐明自噬、肥胖和癌症发展之间复杂的相互作用,特别强调肥胖驱动的变化如何影响自噬的调控以及随后对癌症风险的影响。鉴于肥胖、自噬和各种癌症之间已经建立了联系,肥胖症的迅速流行凸显了这项研究的意义。我们深入探讨了荷尔蒙对肥胖和自噬相互作用的影响,特别是胰岛素和 LEP(瘦素)。此外,我们还提请注意有关肥胖与癌症相关分子因素的最新研究成果,包括激素变化、新陈代谢改变和分泌性自噬。我们认为,针对自噬调节可能为肥胖相关癌症提供一种有效的治疗方法,并指出基于纳米载体的自噬调节靶向疗法取得了令人鼓舞的进展。然而,我们也认识到这些方法所固有的挑战,特别是在其精确性、控制以及自噬在癌症中的双重作用方面。未来的研究方向包括确定新的生物标志物、完善靶向疗法,并将这些方法与精准医学原则相协调,从而为肥胖介导的癌症提供更加个性化、有效的治疗模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives

Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in cancer biology
Seminars in cancer biology 医学-肿瘤学
CiteScore
26.80
自引率
4.10%
发文量
347
审稿时长
15.1 weeks
期刊介绍: Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field. The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies. To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area. The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.
期刊最新文献
Remodeling of tumor microenvironment by cellular senescence and immunosenescence in cervical cancer The interplay between cell death and senescence in cancer Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems Convergent evolution of senescent fibroblasts in fibrosis and cancer with aging A systematic review of cardiovascular toxicities induced by cancer immune therapies: Underlying mechanisms, clinical manifestations and therapeutic approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1