基于 AO/OTA 分类检测小儿前臂远端骨折的多类深度学习模型

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Digital Imaging Pub Date : 2024-02-02 DOI:10.1007/s10278-024-00968-4
Le Nguyen Binh, Nguyen Thanh Nhu, Vu Pham Thao Vy, Do Le Hoang Son, Truong Nguyen Khanh Hung, Nguyen Bach, Hoang Quoc Huy, Le Van Tuan, Nguyen Quoc Khanh Le, Jiunn-Horng Kang
{"title":"基于 AO/OTA 分类检测小儿前臂远端骨折的多类深度学习模型","authors":"Le Nguyen Binh, Nguyen Thanh Nhu, Vu Pham Thao Vy, Do Le Hoang Son, Truong Nguyen Khanh Hung, Nguyen Bach, Hoang Quoc Huy, Le Van Tuan, Nguyen Quoc Khanh Le, Jiunn-Horng Kang","doi":"10.1007/s10278-024-00968-4","DOIUrl":null,"url":null,"abstract":"<p>Common pediatric distal forearm fractures necessitate precise detection. To support prompt treatment planning by clinicians, our study aimed to create a multi-class convolutional neural network (CNN) model for pediatric distal forearm fractures, guided by the AO Foundation/Orthopaedic Trauma Association (AO/ATO) classification system for pediatric fractures. The GRAZPEDWRI-DX dataset (2008–2018) of wrist X-ray images was used. We labeled images into four fracture classes (FRM, FUM, FRE, and FUE with F, fracture; R, radius; U, ulna; M, metaphysis; and E, epiphysis) based on the pediatric AO/ATO classification. We performed multi-class classification by training a YOLOv4-based CNN object detection model with 7006 images from 1809 patients (80% for training and 20% for validation). An 88-image test set from 34 patients was used to evaluate the model performance, which was then compared to the diagnosis performances of two readers—an orthopedist and a radiologist. The overall mean average precision levels on the validation set in four classes of the model were 0.97, 0.92, 0.95, and 0.94, respectively. On the test set, the model’s performance included sensitivities of 0.86, 0.71, 0.88, and 0.89; specificities of 0.88, 0.94, 0.97, and 0.98; and area under the curve (AUC) values of 0.87, 0.83, 0.93, and 0.94, respectively. The best performance among the three readers belonged to the radiologist, with a mean AUC of 0.922, followed by our model (0.892) and the orthopedist (0.830). Therefore, using the AO/OTA concept, our multi-class fracture detection model excelled in identifying pediatric distal forearm fractures.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Class Deep Learning Model for Detecting Pediatric Distal Forearm Fractures Based on the AO/OTA Classification\",\"authors\":\"Le Nguyen Binh, Nguyen Thanh Nhu, Vu Pham Thao Vy, Do Le Hoang Son, Truong Nguyen Khanh Hung, Nguyen Bach, Hoang Quoc Huy, Le Van Tuan, Nguyen Quoc Khanh Le, Jiunn-Horng Kang\",\"doi\":\"10.1007/s10278-024-00968-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Common pediatric distal forearm fractures necessitate precise detection. To support prompt treatment planning by clinicians, our study aimed to create a multi-class convolutional neural network (CNN) model for pediatric distal forearm fractures, guided by the AO Foundation/Orthopaedic Trauma Association (AO/ATO) classification system for pediatric fractures. The GRAZPEDWRI-DX dataset (2008–2018) of wrist X-ray images was used. We labeled images into four fracture classes (FRM, FUM, FRE, and FUE with F, fracture; R, radius; U, ulna; M, metaphysis; and E, epiphysis) based on the pediatric AO/ATO classification. We performed multi-class classification by training a YOLOv4-based CNN object detection model with 7006 images from 1809 patients (80% for training and 20% for validation). An 88-image test set from 34 patients was used to evaluate the model performance, which was then compared to the diagnosis performances of two readers—an orthopedist and a radiologist. The overall mean average precision levels on the validation set in four classes of the model were 0.97, 0.92, 0.95, and 0.94, respectively. On the test set, the model’s performance included sensitivities of 0.86, 0.71, 0.88, and 0.89; specificities of 0.88, 0.94, 0.97, and 0.98; and area under the curve (AUC) values of 0.87, 0.83, 0.93, and 0.94, respectively. The best performance among the three readers belonged to the radiologist, with a mean AUC of 0.922, followed by our model (0.892) and the orthopedist (0.830). Therefore, using the AO/OTA concept, our multi-class fracture detection model excelled in identifying pediatric distal forearm fractures.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-00968-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-00968-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

常见的小儿前臂远端骨折需要精确检测。为了支持临床医生及时制定治疗计划,我们的研究以 AO 基金会/矫形外科创伤协会(AO/ATO)的小儿骨折分类系统为指导,旨在创建一个针对小儿前臂远端骨折的多类卷积神经网络(CNN)模型。我们使用了 GRAZPEDWRI-DX 数据集(2008-2018 年)的腕部 X 光图像。根据儿科 AO/ATO 分类,我们将图像标记为四个骨折类别(FRM、FUM、FRE 和 FUE,其中 F 代表骨折;R 代表桡骨;U 代表尺骨;M 代表干骺端;E 代表骨骺)。我们使用来自 1809 名患者的 7006 张图像(80% 用于训练,20% 用于验证)训练了基于 YOLOv4 的 CNN 物体检测模型,从而进行了多类分类。我们使用来自 34 名患者的 88 张图像测试集来评估模型的性能,然后将其与两名读者--一名骨科医生和一名放射科医生--的诊断结果进行比较。在验证集上,模型四个等级的总体平均精确度分别为 0.97、0.92、0.95 和 0.94。在测试集中,模型的灵敏度分别为 0.86、0.71、0.88 和 0.89;特异度分别为 0.88、0.94、0.97 和 0.98;曲线下面积 (AUC) 值分别为 0.87、0.83、0.93 和 0.94。三位读者中表现最好的是放射科医生,平均 AUC 值为 0.922,其次是我们的模型(0.892)和骨科医生(0.830)。因此,利用 AO/OTA 概念,我们的多类骨折检测模型在识别小儿前臂远端骨折方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Class Deep Learning Model for Detecting Pediatric Distal Forearm Fractures Based on the AO/OTA Classification

Common pediatric distal forearm fractures necessitate precise detection. To support prompt treatment planning by clinicians, our study aimed to create a multi-class convolutional neural network (CNN) model for pediatric distal forearm fractures, guided by the AO Foundation/Orthopaedic Trauma Association (AO/ATO) classification system for pediatric fractures. The GRAZPEDWRI-DX dataset (2008–2018) of wrist X-ray images was used. We labeled images into four fracture classes (FRM, FUM, FRE, and FUE with F, fracture; R, radius; U, ulna; M, metaphysis; and E, epiphysis) based on the pediatric AO/ATO classification. We performed multi-class classification by training a YOLOv4-based CNN object detection model with 7006 images from 1809 patients (80% for training and 20% for validation). An 88-image test set from 34 patients was used to evaluate the model performance, which was then compared to the diagnosis performances of two readers—an orthopedist and a radiologist. The overall mean average precision levels on the validation set in four classes of the model were 0.97, 0.92, 0.95, and 0.94, respectively. On the test set, the model’s performance included sensitivities of 0.86, 0.71, 0.88, and 0.89; specificities of 0.88, 0.94, 0.97, and 0.98; and area under the curve (AUC) values of 0.87, 0.83, 0.93, and 0.94, respectively. The best performance among the three readers belonged to the radiologist, with a mean AUC of 0.922, followed by our model (0.892) and the orthopedist (0.830). Therefore, using the AO/OTA concept, our multi-class fracture detection model excelled in identifying pediatric distal forearm fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
期刊最新文献
Intra-Individual Reproducibility of Automated Abdominal Organ Segmentation—Performance of TotalSegmentator Compared to Human Readers and an Independent nnU-Net Model Teleradiology-Based Referrals for Patients with Gastroenterological Diseases Between Tertiary and Regional Hospitals: A Hospital-to-Hospital Approach Vital Characteristics Cellular Neural Network (VCeNN) for Melanoma Lesion Segmentation: A Biologically Inspired Deep Learning Approach Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study Assessment of Age-Related Differences in Lower Leg Muscles Quality Using Radiomic Features of Magnetic Resonance Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1