{"title":"接种 COVID-19 mRNA 疫苗后继发 IgA 肾病的分子致病机制","authors":"Luoyi Wang, Zhaomin Mao, Lirong Zhang, Fengmin Shao","doi":"10.1159/000535626","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accumulating evidence has disclosed that IgA nephropathy (IgAN) could present shortly after the second dose of COVID-19 mRNA vaccine. However, the undying mechanism remains unclear and we aimed to investigate the potential molecular mechanisms.</p><p><strong>Methods: </strong>We downloaded gene expression datasets of COVID-19 mRNA vaccination (GSE201535) and IgAN (GSE104948). Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify co-expression modules related to the second dose of COVID-19 mRNA vaccination and IgAN. Differentially expressed genes (DEGs) were screened, and a transcription factor (TF)-miRNA regulatory network and protein-drug interaction were constructed for the shared genes.</p><p><strong>Results: </strong>WGCNA identified one module associated with the second dose of COVID-19 mRNA vaccine and four modules associated with IgAN. Gene ontology (GO) analyses revealed enrichment of cell cycle-related processes for the COVID-19 mRNA vaccine hub genes and immune effector processes for the IgAN hub genes. We identified 74 DEGs for the second dose of COVID-19 mRNA vaccine and 574 DEGs for IgAN. Intersection analysis with COVID-19 vaccine-related genes led to the identification of two shared genes, TOP2A and CEP55. The TF-miRNA network analysis showed that hsa-miR-144 and ATF1 might regulate the shared hub genes.</p><p><strong>Conclusions: </strong>This study provides insights into the common pathogenesis of COVID-19 mRNA vaccination and IgAN. The identified pivotal genes may offer new directions for further mechanistic studies of IgAN secondary to COVID-19 mRNA vaccination.</p>","PeriodicalId":17813,"journal":{"name":"Kidney & blood pressure research","volume":" ","pages":"144-154"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Pathogenic Mechanisms of IgA Nephropathy Secondary to COVID-19 mRNA Vaccination.\",\"authors\":\"Luoyi Wang, Zhaomin Mao, Lirong Zhang, Fengmin Shao\",\"doi\":\"10.1159/000535626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Accumulating evidence has disclosed that IgA nephropathy (IgAN) could present shortly after the second dose of COVID-19 mRNA vaccine. However, the undying mechanism remains unclear and we aimed to investigate the potential molecular mechanisms.</p><p><strong>Methods: </strong>We downloaded gene expression datasets of COVID-19 mRNA vaccination (GSE201535) and IgAN (GSE104948). Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify co-expression modules related to the second dose of COVID-19 mRNA vaccination and IgAN. Differentially expressed genes (DEGs) were screened, and a transcription factor (TF)-miRNA regulatory network and protein-drug interaction were constructed for the shared genes.</p><p><strong>Results: </strong>WGCNA identified one module associated with the second dose of COVID-19 mRNA vaccine and four modules associated with IgAN. Gene ontology (GO) analyses revealed enrichment of cell cycle-related processes for the COVID-19 mRNA vaccine hub genes and immune effector processes for the IgAN hub genes. We identified 74 DEGs for the second dose of COVID-19 mRNA vaccine and 574 DEGs for IgAN. Intersection analysis with COVID-19 vaccine-related genes led to the identification of two shared genes, TOP2A and CEP55. The TF-miRNA network analysis showed that hsa-miR-144 and ATF1 might regulate the shared hub genes.</p><p><strong>Conclusions: </strong>This study provides insights into the common pathogenesis of COVID-19 mRNA vaccination and IgAN. The identified pivotal genes may offer new directions for further mechanistic studies of IgAN secondary to COVID-19 mRNA vaccination.</p>\",\"PeriodicalId\":17813,\"journal\":{\"name\":\"Kidney & blood pressure research\",\"volume\":\" \",\"pages\":\"144-154\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney & blood pressure research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000535626\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney & blood pressure research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000535626","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Molecular Pathogenic Mechanisms of IgA Nephropathy Secondary to COVID-19 mRNA Vaccination.
Introduction: Accumulating evidence has disclosed that IgA nephropathy (IgAN) could present shortly after the second dose of COVID-19 mRNA vaccine. However, the undying mechanism remains unclear and we aimed to investigate the potential molecular mechanisms.
Methods: We downloaded gene expression datasets of COVID-19 mRNA vaccination (GSE201535) and IgAN (GSE104948). Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify co-expression modules related to the second dose of COVID-19 mRNA vaccination and IgAN. Differentially expressed genes (DEGs) were screened, and a transcription factor (TF)-miRNA regulatory network and protein-drug interaction were constructed for the shared genes.
Results: WGCNA identified one module associated with the second dose of COVID-19 mRNA vaccine and four modules associated with IgAN. Gene ontology (GO) analyses revealed enrichment of cell cycle-related processes for the COVID-19 mRNA vaccine hub genes and immune effector processes for the IgAN hub genes. We identified 74 DEGs for the second dose of COVID-19 mRNA vaccine and 574 DEGs for IgAN. Intersection analysis with COVID-19 vaccine-related genes led to the identification of two shared genes, TOP2A and CEP55. The TF-miRNA network analysis showed that hsa-miR-144 and ATF1 might regulate the shared hub genes.
Conclusions: This study provides insights into the common pathogenesis of COVID-19 mRNA vaccination and IgAN. The identified pivotal genes may offer new directions for further mechanistic studies of IgAN secondary to COVID-19 mRNA vaccination.
期刊介绍:
This journal comprises both clinical and basic studies at the interface of nephrology, hypertension and cardiovascular research. The topics to be covered include the structural organization and biochemistry of the normal and diseased kidney, the molecular biology of transporters, the physiology and pathophysiology of glomerular filtration and tubular transport, endothelial and vascular smooth muscle cell function and blood pressure control, as well as water, electrolyte and mineral metabolism. Also discussed are the (patho)physiology and (patho) biochemistry of renal hormones, the molecular biology, genetics and clinical course of renal disease and hypertension, the renal elimination, action and clinical use of drugs, as well as dialysis and transplantation. Featuring peer-reviewed original papers, editorials translating basic science into patient-oriented research and disease, in depth reviews, and regular special topic sections, ''Kidney & Blood Pressure Research'' is an important source of information for researchers in nephrology and cardiovascular medicine.