用德巴克-凯尼奥(Debacq-Chainiaux)方案检测辐射引起的衰老:阳性事件检测的改进和升级。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Methods in cell biology Pub Date : 2024-01-01 Epub Date: 2023-07-11 DOI:10.1016/bs.mcb.2022.10.015
V Paget, O Guipaud, A François, F Milliat
{"title":"用德巴克-凯尼奥(Debacq-Chainiaux)方案检测辐射引起的衰老:阳性事件检测的改进和升级。","authors":"V Paget, O Guipaud, A François, F Milliat","doi":"10.1016/bs.mcb.2022.10.015","DOIUrl":null,"url":null,"abstract":"<p><p>Senescent cells are blocked in the cell cycle but remain metabolically active. These cells, once engaged in the senescence process, fail to initiate DNA replication. Due to the shortening of telomeres, replicative senescence can be triggered by a DNA damage response. Moreover, cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, cell-cell fusion or after ionizing radiation. There are multiple experimental ways to detect senescent cells directly or indirectly. Senescence-associated cellular traits (SA β-Gal activity, increase in cell volume and lysosome content, appearance of γ-H2AX foci, increase of ROS and oxidative damage adducts, etc.) can be identified by numerous methods of detection (flow cytometry, confocal imaging, in situ staining, etc.). Here, we improved an existing flow cytometry protocol and further developed a new one specifically tailored to ionizing radiation-induced endothelial senescence. Thus, we have upgraded the Debacq-Chainiaux protocol and added improvements in this protocol (i) to better detect positive events (ii) to offer a compatibility to simultaneously analyze various intracellular molecules including phosphorylated signaling proteins and cytokines, whether related or not to senescence processes.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of radiation-induced senescence by the Debacq-Chainiaux protocol: Improvements and upgrade in the detection of positive events.\",\"authors\":\"V Paget, O Guipaud, A François, F Milliat\",\"doi\":\"10.1016/bs.mcb.2022.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senescent cells are blocked in the cell cycle but remain metabolically active. These cells, once engaged in the senescence process, fail to initiate DNA replication. Due to the shortening of telomeres, replicative senescence can be triggered by a DNA damage response. Moreover, cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, cell-cell fusion or after ionizing radiation. There are multiple experimental ways to detect senescent cells directly or indirectly. Senescence-associated cellular traits (SA β-Gal activity, increase in cell volume and lysosome content, appearance of γ-H2AX foci, increase of ROS and oxidative damage adducts, etc.) can be identified by numerous methods of detection (flow cytometry, confocal imaging, in situ staining, etc.). Here, we improved an existing flow cytometry protocol and further developed a new one specifically tailored to ionizing radiation-induced endothelial senescence. Thus, we have upgraded the Debacq-Chainiaux protocol and added improvements in this protocol (i) to better detect positive events (ii) to offer a compatibility to simultaneously analyze various intracellular molecules including phosphorylated signaling proteins and cytokines, whether related or not to senescence processes.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2022.10.015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2022.10.015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

衰老细胞在细胞周期中受阻,但新陈代谢依然活跃。这些细胞一旦进入衰老过程,就无法启动 DNA 复制。由于端粒缩短,复制衰老可由 DNA 损伤反应触发。此外,细胞也可在活性氧(ROS)升高、癌基因激活、细胞-细胞融合或电离辐射后因 DNA 损伤而诱导衰老。有多种实验方法可以直接或间接检测衰老细胞。衰老相关的细胞特征(SA β-Gal活性、细胞体积和溶酶体含量增加、γ-H2AX病灶出现、ROS和氧化损伤加合物增加等)可通过多种检测方法(流式细胞仪、共聚焦成像、原位染色等)来识别。在此,我们改进了现有的流式细胞术方案,并进一步开发了专门针对电离辐射诱导的内皮衰老的新方案。因此,我们对 Debacq-Chainiaux 方案进行了升级,并在该方案中增加了以下改进:(i)更好地检测阳性事件;(ii)提供同时分析各种细胞内分子(包括磷酸化信号蛋白和细胞因子)的兼容性,无论这些分子是否与衰老过程有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of radiation-induced senescence by the Debacq-Chainiaux protocol: Improvements and upgrade in the detection of positive events.

Senescent cells are blocked in the cell cycle but remain metabolically active. These cells, once engaged in the senescence process, fail to initiate DNA replication. Due to the shortening of telomeres, replicative senescence can be triggered by a DNA damage response. Moreover, cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, cell-cell fusion or after ionizing radiation. There are multiple experimental ways to detect senescent cells directly or indirectly. Senescence-associated cellular traits (SA β-Gal activity, increase in cell volume and lysosome content, appearance of γ-H2AX foci, increase of ROS and oxidative damage adducts, etc.) can be identified by numerous methods of detection (flow cytometry, confocal imaging, in situ staining, etc.). Here, we improved an existing flow cytometry protocol and further developed a new one specifically tailored to ionizing radiation-induced endothelial senescence. Thus, we have upgraded the Debacq-Chainiaux protocol and added improvements in this protocol (i) to better detect positive events (ii) to offer a compatibility to simultaneously analyze various intracellular molecules including phosphorylated signaling proteins and cytokines, whether related or not to senescence processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
期刊最新文献
Assessing chronological aging in Saccharomyces cerevisiae. Assessing microbiota composition in the context of aging. Assessing polyglutamine tract aggregation in the nematode Caenorhabditis elegans. Assessment of cell cycle progression and mitotic slippage by videomicroscopy. Cellular senescence and aging at the crossroad between immunity and cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1