机器学习辅助收集减少的传感器数据,改进分析管道

Ankur Verma , Ayush Goyal , Soundar Kumara
{"title":"机器学习辅助收集减少的传感器数据,改进分析管道","authors":"Ankur Verma ,&nbsp;Ayush Goyal ,&nbsp;Soundar Kumara","doi":"10.1016/j.procir.2023.09.242","DOIUrl":null,"url":null,"abstract":"<div><p>Sensor data is increasingly offering better operational visibility. However, the data deluge is also posing cost and complexity challenges on the data analytics pipeline, which comprises of edge computing, power, transmission, and storage for data-driven decision making. To address the data deluge problem, we propose a machine learning assisted approach of collecting less data upfront to solve different sensor data analytics problems. While sampling at Nyquist rates, we do not collect every data point, but rather sample according to the information content in the signal. A comprehensive experimental design is undertaken to show that collecting more than a certain fraction of raw data only leads to infinitesimal performance improvements. The engineering advantages of the proposed near real-time approach are quantified showing a significant reduction in analytics pipeline resources required for industrial digital transformation applications.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827123009617/pdf?md5=0103a6afa4481ff1f411d1a633c83f2e&pid=1-s2.0-S2212827123009617-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted collection of reduced sensor data for improved analytics pipeline\",\"authors\":\"Ankur Verma ,&nbsp;Ayush Goyal ,&nbsp;Soundar Kumara\",\"doi\":\"10.1016/j.procir.2023.09.242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sensor data is increasingly offering better operational visibility. However, the data deluge is also posing cost and complexity challenges on the data analytics pipeline, which comprises of edge computing, power, transmission, and storage for data-driven decision making. To address the data deluge problem, we propose a machine learning assisted approach of collecting less data upfront to solve different sensor data analytics problems. While sampling at Nyquist rates, we do not collect every data point, but rather sample according to the information content in the signal. A comprehensive experimental design is undertaken to show that collecting more than a certain fraction of raw data only leads to infinitesimal performance improvements. The engineering advantages of the proposed near real-time approach are quantified showing a significant reduction in analytics pipeline resources required for industrial digital transformation applications.</p></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212827123009617/pdf?md5=0103a6afa4481ff1f411d1a633c83f2e&pid=1-s2.0-S2212827123009617-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827123009617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827123009617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传感器数据正在越来越多地提供更好的运营可视性。然而,数据洪流也给数据分析管道带来了成本和复杂性方面的挑战,数据分析管道包括边缘计算、电源、传输和存储,用于数据驱动决策。为解决数据泛滥问题,我们提出了一种机器学习辅助方法,即在前期收集较少的数据,以解决不同的传感器数据分析问题。在以奈奎斯特速率采样的同时,我们并不收集每个数据点,而是根据信号中的信息含量进行采样。我们进行了全面的实验设计,结果表明,收集超过一定数量的原始数据只能带来微不足道的性能提升。我们对所提出的近实时方法的工程优势进行了量化,结果显示,工业数字化转型应用所需的分析管道资源显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-assisted collection of reduced sensor data for improved analytics pipeline

Sensor data is increasingly offering better operational visibility. However, the data deluge is also posing cost and complexity challenges on the data analytics pipeline, which comprises of edge computing, power, transmission, and storage for data-driven decision making. To address the data deluge problem, we propose a machine learning assisted approach of collecting less data upfront to solve different sensor data analytics problems. While sampling at Nyquist rates, we do not collect every data point, but rather sample according to the information content in the signal. A comprehensive experimental design is undertaken to show that collecting more than a certain fraction of raw data only leads to infinitesimal performance improvements. The engineering advantages of the proposed near real-time approach are quantified showing a significant reduction in analytics pipeline resources required for industrial digital transformation applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1