{"title":"多面体复合物的局部有限补全","authors":"Desmond Coles, Netanel Friedenberg","doi":"10.1007/s00454-024-00629-x","DOIUrl":null,"url":null,"abstract":"<p>We develop a method for subdividing polyhedral complexes in a way that restricts the possible recession cones and allows one to work with a fixed class of polyhedron. We use these results to construct locally finite completions of rational polyhedral complexes whose recession cones lie in a fixed fan, locally finite polytopal completions of polytopal complexes, and locally finite zonotopal completions of zonotopal complexes.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally Finite Completions of Polyhedral Complexes\",\"authors\":\"Desmond Coles, Netanel Friedenberg\",\"doi\":\"10.1007/s00454-024-00629-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a method for subdividing polyhedral complexes in a way that restricts the possible recession cones and allows one to work with a fixed class of polyhedron. We use these results to construct locally finite completions of rational polyhedral complexes whose recession cones lie in a fixed fan, locally finite polytopal completions of polytopal complexes, and locally finite zonotopal completions of zonotopal complexes.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00629-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00629-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Locally Finite Completions of Polyhedral Complexes
We develop a method for subdividing polyhedral complexes in a way that restricts the possible recession cones and allows one to work with a fixed class of polyhedron. We use these results to construct locally finite completions of rational polyhedral complexes whose recession cones lie in a fixed fan, locally finite polytopal completions of polytopal complexes, and locally finite zonotopal completions of zonotopal complexes.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.