基于模糊本体的知识驱动型疾病风险水平预测与优化辅助集合分类器

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-02-04 DOI:10.1016/j.datak.2024.102278
Huma Parveen , Syed Wajahat Abbas Rizvi , Raja Sarath Kumar Boddu
{"title":"基于模糊本体的知识驱动型疾病风险水平预测与优化辅助集合分类器","authors":"Huma Parveen ,&nbsp;Syed Wajahat Abbas Rizvi ,&nbsp;Raja Sarath Kumar Boddu","doi":"10.1016/j.datak.2024.102278","DOIUrl":null,"url":null,"abstract":"<div><p>Modern medicinal analysis is a complex procedure, requiring precise patient data, scientific knowledge obtained over numerous years and a theoretical understanding of related medical literature. To improve the accuracy and to reduce the time for diagnosis, clinical decision support systems (DSS) were introduced, which incorporate data mining schemes for enhancing the disease diagnosing accuracy. This work proposes a new disease-predicting model that involves 3 stages. Initially, “improved stemming and tokenization” are carried out in the pre-processing stage. Then, the “Fuzzy ontology, improved mutual information (MI), and correlation features” are extracted. Then, prediction is carried out via ensemble classifiers that include “improved Fuzzy logic, Long Short Term Memory (LSTM), Deep Convolution Neural Network (DCNN), and Bidirectional Gated Recurrent Unit (Bi-GRU)”.The outcomes from improved fuzzy logic, LSTM, and DCNN are further classified via Bi-GRU which offers the results. Specifically, Bi-GRU weights are optimally tuned using Deer Hunting Update Explored Arithmetic Optimization (DHUEAO). Finally, the efficiency of the proposed work is determined concerning a variety of metrics.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"151 ","pages":"Article 102278"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy-Ontology based knowledge driven disease risk level prediction with optimization assisted ensemble classifier\",\"authors\":\"Huma Parveen ,&nbsp;Syed Wajahat Abbas Rizvi ,&nbsp;Raja Sarath Kumar Boddu\",\"doi\":\"10.1016/j.datak.2024.102278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modern medicinal analysis is a complex procedure, requiring precise patient data, scientific knowledge obtained over numerous years and a theoretical understanding of related medical literature. To improve the accuracy and to reduce the time for diagnosis, clinical decision support systems (DSS) were introduced, which incorporate data mining schemes for enhancing the disease diagnosing accuracy. This work proposes a new disease-predicting model that involves 3 stages. Initially, “improved stemming and tokenization” are carried out in the pre-processing stage. Then, the “Fuzzy ontology, improved mutual information (MI), and correlation features” are extracted. Then, prediction is carried out via ensemble classifiers that include “improved Fuzzy logic, Long Short Term Memory (LSTM), Deep Convolution Neural Network (DCNN), and Bidirectional Gated Recurrent Unit (Bi-GRU)”.The outcomes from improved fuzzy logic, LSTM, and DCNN are further classified via Bi-GRU which offers the results. Specifically, Bi-GRU weights are optimally tuned using Deer Hunting Update Explored Arithmetic Optimization (DHUEAO). Finally, the efficiency of the proposed work is determined concerning a variety of metrics.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"151 \",\"pages\":\"Article 102278\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000028\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000028","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现代医学分析是一个复杂的过程,需要精确的病人数据、多年积累的科学知识以及对相关医学文献的理论理解。为了提高诊断的准确性并缩短诊断时间,临床决策支持系统(DSS)应运而生,它结合了数据挖掘方案以提高疾病诊断的准确性。这项工作提出了一种新的疾病预测模型,包括 3 个阶段。首先,在预处理阶段进行 "改进的词干化和标记化"。然后,提取 "模糊本体、改进的互信息(MI)和相关特征"。然后,通过包括 "改进的模糊逻辑、长短期记忆(LSTM)、深度卷积神经网络(DCNN)和双向门控递归单元(Bi-GRU)"在内的集合分类器进行预测。具体来说,Bi-GRU 权重是通过猎鹿更新探索算术优化(DHUEAO)进行优化调整的。最后,根据各种指标确定了拟议工作的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy-Ontology based knowledge driven disease risk level prediction with optimization assisted ensemble classifier

Modern medicinal analysis is a complex procedure, requiring precise patient data, scientific knowledge obtained over numerous years and a theoretical understanding of related medical literature. To improve the accuracy and to reduce the time for diagnosis, clinical decision support systems (DSS) were introduced, which incorporate data mining schemes for enhancing the disease diagnosing accuracy. This work proposes a new disease-predicting model that involves 3 stages. Initially, “improved stemming and tokenization” are carried out in the pre-processing stage. Then, the “Fuzzy ontology, improved mutual information (MI), and correlation features” are extracted. Then, prediction is carried out via ensemble classifiers that include “improved Fuzzy logic, Long Short Term Memory (LSTM), Deep Convolution Neural Network (DCNN), and Bidirectional Gated Recurrent Unit (Bi-GRU)”.The outcomes from improved fuzzy logic, LSTM, and DCNN are further classified via Bi-GRU which offers the results. Specifically, Bi-GRU weights are optimally tuned using Deer Hunting Update Explored Arithmetic Optimization (DHUEAO). Finally, the efficiency of the proposed work is determined concerning a variety of metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Goal modelling in aeronautics: Practical applications for aircraft and manufacturing designs Ethical reasoning methods for ICT: What they are and when to use them SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph NoSQL document data migration strategy in the context of schema evolution VarClaMM: A reference meta-model to understand DNA variant classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1