Katherine E Mills, Adam Kemberling, Lisa A Kerr, Sean M Lucey, Richard S McBride, Janet A Nye, Andrew J Pershing, Miguel Barajas, Carly S Lovas
{"title":"海洋变暖热点地区多物种种群尺度气候变化信号的出现","authors":"Katherine E Mills, Adam Kemberling, Lisa A Kerr, Sean M Lucey, Richard S McBride, Janet A Nye, Andrew J Pershing, Miguel Barajas, Carly S Lovas","doi":"10.1093/icesjms/fsad208","DOIUrl":null,"url":null,"abstract":"Ocean waters of the Northeast US continental shelf have warmed rapidly in recent years, with sea surface temperatures rising 2.5 times faster than those of the global oceans. With this strong warming trend, the frequency and duration of marine heatwaves have increased. These temperature changes stood out as a distinct warm temperature regime during the 2010s. During this decade, fish population characteristics also differed from the past. Species distribution shifts were detected for many species, demonstrating one way species could adapt to warming conditions. However, for most species, distribution shifts were insufficient to avoid warmer surface or bottom temperatures. As species occupied warmer habitats, growth patterns aligned with expectations for warming temperatures. Consistent with the temperature-size rule, some species exhibited faster growth at early life stages but plateaued at smaller body sizes; other species, however, experienced reduced growth across all ages, indicating thermal stress. Finally, population productivity indexed by the recruit-to-spawner ratio declined significantly during the 2010s for some populations. Changes in these three processes—distribution, growth, and productivity—indicate the emergence of climate change signals across multiple Northeast US fish populations. These effects create new challenges for fishery managers and industry participants operating in the context of non-stationarity and uncertainty.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"41 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multispecies population-scale emergence of climate change signals in an ocean warming hotspot\",\"authors\":\"Katherine E Mills, Adam Kemberling, Lisa A Kerr, Sean M Lucey, Richard S McBride, Janet A Nye, Andrew J Pershing, Miguel Barajas, Carly S Lovas\",\"doi\":\"10.1093/icesjms/fsad208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ocean waters of the Northeast US continental shelf have warmed rapidly in recent years, with sea surface temperatures rising 2.5 times faster than those of the global oceans. With this strong warming trend, the frequency and duration of marine heatwaves have increased. These temperature changes stood out as a distinct warm temperature regime during the 2010s. During this decade, fish population characteristics also differed from the past. Species distribution shifts were detected for many species, demonstrating one way species could adapt to warming conditions. However, for most species, distribution shifts were insufficient to avoid warmer surface or bottom temperatures. As species occupied warmer habitats, growth patterns aligned with expectations for warming temperatures. Consistent with the temperature-size rule, some species exhibited faster growth at early life stages but plateaued at smaller body sizes; other species, however, experienced reduced growth across all ages, indicating thermal stress. Finally, population productivity indexed by the recruit-to-spawner ratio declined significantly during the 2010s for some populations. Changes in these three processes—distribution, growth, and productivity—indicate the emergence of climate change signals across multiple Northeast US fish populations. These effects create new challenges for fishery managers and industry participants operating in the context of non-stationarity and uncertainty.\",\"PeriodicalId\":51072,\"journal\":{\"name\":\"ICES Journal of Marine Science\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICES Journal of Marine Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/icesjms/fsad208\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsad208","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Multispecies population-scale emergence of climate change signals in an ocean warming hotspot
Ocean waters of the Northeast US continental shelf have warmed rapidly in recent years, with sea surface temperatures rising 2.5 times faster than those of the global oceans. With this strong warming trend, the frequency and duration of marine heatwaves have increased. These temperature changes stood out as a distinct warm temperature regime during the 2010s. During this decade, fish population characteristics also differed from the past. Species distribution shifts were detected for many species, demonstrating one way species could adapt to warming conditions. However, for most species, distribution shifts were insufficient to avoid warmer surface or bottom temperatures. As species occupied warmer habitats, growth patterns aligned with expectations for warming temperatures. Consistent with the temperature-size rule, some species exhibited faster growth at early life stages but plateaued at smaller body sizes; other species, however, experienced reduced growth across all ages, indicating thermal stress. Finally, population productivity indexed by the recruit-to-spawner ratio declined significantly during the 2010s for some populations. Changes in these three processes—distribution, growth, and productivity—indicate the emergence of climate change signals across multiple Northeast US fish populations. These effects create new challenges for fishery managers and industry participants operating in the context of non-stationarity and uncertainty.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.