黄体化过程中合成的脂滴在怀孕后会降解

IF 1.9 4区 生物学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Reproduction and Development Pub Date : 2024-02-04 DOI:10.1262/jrd.2023-095
Junichiro MITSUI, Megumi IBAYASHI, Ryutaro AIZAWA, Tomonori ISHIKAWA, Naoyuki MIYASAKA, Satoshi TSUKAMOTO
{"title":"黄体化过程中合成的脂滴在怀孕后会降解","authors":"Junichiro MITSUI, Megumi IBAYASHI, Ryutaro AIZAWA, Tomonori ISHIKAWA, Naoyuki MIYASAKA, Satoshi TSUKAMOTO","doi":"10.1262/jrd.2023-095","DOIUrl":null,"url":null,"abstract":"</p><p>After pregnancy, the corpus luteum (CL) functions as a transient endocrine gland that produces progesterone, which is necessary to maintain pregnancy. To maintain constant progesterone production, CLs are enriched in lipids as its precursors. Lipid droplets (LDs) are organelles that originate from the endoplasmic reticulum and store neutral lipids such as triacylglycerols and cholesteryl esters. The size and number of LDs in a cell are regulated by LD-associated proteins that coat their surface. LD degradation is regulated by either neutral lipid hydrolases (lipolysis), selective autophagic mechanism (lipophagy), or both. Mammalian CLs are long known to be enriched in LDs, but LDs are rapidly depleted after pregnancy and reappear near the time of delivery. In this present study, we hypothesized that LDs synthesized by luteinization are massively degraded after pregnancy. Using mCherry-HPos mice, in which LD synthesis can be visualized <i>in vivo</i>, we found that LD synthesis, which was activated during luteal development, was suppressed after implantation. In CLs, LD synthesis remained low during pregnancy, but was reactivated before and after delivery. These changes in LDs were confirmed using electron microscopy and immunostaining. Furthermore, LD degradation was mediated by lipolysis rather than lipophagy. In summary, our findings indicate that luteinization-induced LD synthesis is suppressed after pregnancy onset and that CLs are lipid-poor during pregnancy because LDs stored during luteal development are extensively degraded by lipolysis.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2023-095/figure/advpub_2023-095.jpg\"/>\nGraphical Abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid droplets synthesized during luteinization are degraded after pregnancy\",\"authors\":\"Junichiro MITSUI, Megumi IBAYASHI, Ryutaro AIZAWA, Tomonori ISHIKAWA, Naoyuki MIYASAKA, Satoshi TSUKAMOTO\",\"doi\":\"10.1262/jrd.2023-095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>After pregnancy, the corpus luteum (CL) functions as a transient endocrine gland that produces progesterone, which is necessary to maintain pregnancy. To maintain constant progesterone production, CLs are enriched in lipids as its precursors. Lipid droplets (LDs) are organelles that originate from the endoplasmic reticulum and store neutral lipids such as triacylglycerols and cholesteryl esters. The size and number of LDs in a cell are regulated by LD-associated proteins that coat their surface. LD degradation is regulated by either neutral lipid hydrolases (lipolysis), selective autophagic mechanism (lipophagy), or both. Mammalian CLs are long known to be enriched in LDs, but LDs are rapidly depleted after pregnancy and reappear near the time of delivery. In this present study, we hypothesized that LDs synthesized by luteinization are massively degraded after pregnancy. Using mCherry-HPos mice, in which LD synthesis can be visualized <i>in vivo</i>, we found that LD synthesis, which was activated during luteal development, was suppressed after implantation. In CLs, LD synthesis remained low during pregnancy, but was reactivated before and after delivery. These changes in LDs were confirmed using electron microscopy and immunostaining. Furthermore, LD degradation was mediated by lipolysis rather than lipophagy. In summary, our findings indicate that luteinization-induced LD synthesis is suppressed after pregnancy onset and that CLs are lipid-poor during pregnancy because LDs stored during luteal development are extensively degraded by lipolysis.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2023-095/figure/advpub_2023-095.jpg\\\"/>\\nGraphical Abstract <span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":16942,\"journal\":{\"name\":\"Journal of Reproduction and Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproduction and Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2023-095\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-095","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

怀孕后,黄体(CL)作为一个短暂的内分泌腺,会分泌维持妊娠所需的孕酮。为了维持孕酮的持续分泌,黄体富含脂质作为其前体。脂滴(LDs)是源自内质网的细胞器,储存中性脂质,如三酰甘油和胆固醇酯。细胞中 LD 的大小和数量由包裹在其表面的 LD 相关蛋白调节。LD 的降解由中性脂质水解酶(脂肪分解)、选择性自噬机制(脂肪吞噬)或两者共同调节。众所周知,哺乳动物的CL富含LDs,但LDs在怀孕后会迅速消耗,并在临近分娩时重新出现。在本研究中,我们假设黄体化合成的 LDs 在妊娠后会大量降解。我们利用 mCherry-HPos 小鼠(可在体内观察到 LD 的合成)发现,在黄体发育过程中被激活的 LD 合成在植入后受到抑制。在 CLs 中,LD 合成在妊娠期间保持低水平,但在分娩前后又重新激活。电子显微镜和免疫染色法证实了 LD 的这些变化。此外,LD 的降解是由脂肪分解而非噬脂作用介导的。总之,我们的研究结果表明,黄体化诱导的 LD 合成在妊娠开始后受到抑制,而 CLs 在妊娠期间缺乏脂质,因为在黄体发育过程中储存的 LDs 被脂肪分解广泛降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipid droplets synthesized during luteinization are degraded after pregnancy

After pregnancy, the corpus luteum (CL) functions as a transient endocrine gland that produces progesterone, which is necessary to maintain pregnancy. To maintain constant progesterone production, CLs are enriched in lipids as its precursors. Lipid droplets (LDs) are organelles that originate from the endoplasmic reticulum and store neutral lipids such as triacylglycerols and cholesteryl esters. The size and number of LDs in a cell are regulated by LD-associated proteins that coat their surface. LD degradation is regulated by either neutral lipid hydrolases (lipolysis), selective autophagic mechanism (lipophagy), or both. Mammalian CLs are long known to be enriched in LDs, but LDs are rapidly depleted after pregnancy and reappear near the time of delivery. In this present study, we hypothesized that LDs synthesized by luteinization are massively degraded after pregnancy. Using mCherry-HPos mice, in which LD synthesis can be visualized in vivo, we found that LD synthesis, which was activated during luteal development, was suppressed after implantation. In CLs, LD synthesis remained low during pregnancy, but was reactivated before and after delivery. These changes in LDs were confirmed using electron microscopy and immunostaining. Furthermore, LD degradation was mediated by lipolysis rather than lipophagy. In summary, our findings indicate that luteinization-induced LD synthesis is suppressed after pregnancy onset and that CLs are lipid-poor during pregnancy because LDs stored during luteal development are extensively degraded by lipolysis.

Graphical Abstract Fullsize Image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reproduction and Development
Journal of Reproduction and Development 生物-奶制品与动物科学
CiteScore
3.70
自引率
11.10%
发文量
52
审稿时长
2 months
期刊介绍: Journal of Reproduction and Development (JRD) is the official journal of the Society for Reproduction and Development, published bimonthly, and welcomes original articles. JRD provides free full-text access of all the published articles on the web. The functions of the journal are managed by Editorial Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are peer-reviewed critically by two or more reviewers. Acceptance is based on scientific content and presentation of the materials. The Editors select reviewers and correspond with authors. Final decisions about acceptance or rejection of manuscripts are made by the Editor-in-Chief and Co-Editor-in-Chief.
期刊最新文献
MiR-145-5p regulates granulosa cell proliferation by targeting the SET gene in KGN cells. Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system. Preovulatory follicular dynamics and ovulatory events following the use of GnRH 84 h after medroxyprogesterone acetate sponge removal in postpartum buffaloes. Central δ/κ opioid receptor signaling pathways mediate chronic and/or acute suckling-induced LH suppression in rats during late lactation. Three-dimensional cell culture using CD9-positive cells isolated from marginal cell layer of intermediate lobe of rats sustains in vivo-like primary niche environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1