Shunying Liu, Yanhai Feng, Yang Tan, Jinyi Chen, Tao Yang, Xiaoyu Wang, Lingfei Li, Fangjie Wang, Huaping Liang, Julia-Li Zhong, Chao Qi, Xia Lei
{"title":"光敏剂水凝胶:新型抗菌敷料","authors":"Shunying Liu, Yanhai Feng, Yang Tan, Jinyi Chen, Tao Yang, Xiaoyu Wang, Lingfei Li, Fangjie Wang, Huaping Liang, Julia-Li Zhong, Chao Qi, Xia Lei","doi":"10.1111/wrr.13156","DOIUrl":null,"url":null,"abstract":"Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":"39 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photosensitizer-loaded hydrogels: A new antibacterial dressing\",\"authors\":\"Shunying Liu, Yanhai Feng, Yang Tan, Jinyi Chen, Tao Yang, Xiaoyu Wang, Lingfei Li, Fangjie Wang, Huaping Liang, Julia-Li Zhong, Chao Qi, Xia Lei\",\"doi\":\"10.1111/wrr.13156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13156\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13156","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Photosensitizer-loaded hydrogels: A new antibacterial dressing
Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.