Xuefeng Bai, Yi Li, Yabo Xie, Qiancheng Chen, Xin Zhang, Jian-Rong Li
{"title":"利用可解释的机器学习模型高通量筛选 CO2 环加成 MOF 催化剂","authors":"Xuefeng Bai, Yi Li, Yabo Xie, Qiancheng Chen, Xin Zhang, Jian-Rong Li","doi":"10.1016/j.gee.2024.01.010","DOIUrl":null,"url":null,"abstract":"<p>The high porosity and tunable chemical functionality of metal-organic frameworks (MOFs) make it a promising catalyst design platform. High-throughput screening of catalytic performance is feasible since the large MOF structure database is available. In this study, we report a machine learning model for high-throughput screening of MOF catalysts for the CO<sub>2</sub> cycloaddition reaction. The descriptors for model training were judiciously chosen according to the reaction mechanism, which leads to high accuracy up to 97% for the 75% quantile of the training set as the classification criterion. The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding. 12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100 °C and 1 bar within one day using the model, and 239 potentially efficient catalysts were discovered. Among them, MOF-76(Y) achieved the top performance experimentally among reported MOFs, in good agreement with the prediction.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"72 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model\",\"authors\":\"Xuefeng Bai, Yi Li, Yabo Xie, Qiancheng Chen, Xin Zhang, Jian-Rong Li\",\"doi\":\"10.1016/j.gee.2024.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The high porosity and tunable chemical functionality of metal-organic frameworks (MOFs) make it a promising catalyst design platform. High-throughput screening of catalytic performance is feasible since the large MOF structure database is available. In this study, we report a machine learning model for high-throughput screening of MOF catalysts for the CO<sub>2</sub> cycloaddition reaction. The descriptors for model training were judiciously chosen according to the reaction mechanism, which leads to high accuracy up to 97% for the 75% quantile of the training set as the classification criterion. The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding. 12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100 °C and 1 bar within one day using the model, and 239 potentially efficient catalysts were discovered. Among them, MOF-76(Y) achieved the top performance experimentally among reported MOFs, in good agreement with the prediction.</p>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.01.010\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.01.010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model
The high porosity and tunable chemical functionality of metal-organic frameworks (MOFs) make it a promising catalyst design platform. High-throughput screening of catalytic performance is feasible since the large MOF structure database is available. In this study, we report a machine learning model for high-throughput screening of MOF catalysts for the CO2 cycloaddition reaction. The descriptors for model training were judiciously chosen according to the reaction mechanism, which leads to high accuracy up to 97% for the 75% quantile of the training set as the classification criterion. The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding. 12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100 °C and 1 bar within one day using the model, and 239 potentially efficient catalysts were discovered. Among them, MOF-76(Y) achieved the top performance experimentally among reported MOFs, in good agreement with the prediction.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.