基于重构双向递归神经网络的已知雷达信号开放集场景去交织方法

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2024-02-03 DOI:10.1049/rsn2.12542
Haiping Zheng, Kai Xie, Yingshen Zhu, Jinjian Lin, Lihong Wang
{"title":"基于重构双向递归神经网络的已知雷达信号开放集场景去交织方法","authors":"Haiping Zheng,&nbsp;Kai Xie,&nbsp;Yingshen Zhu,&nbsp;Jinjian Lin,&nbsp;Lihong Wang","doi":"10.1049/rsn2.12542","DOIUrl":null,"url":null,"abstract":"<p>In electronic warfare, radar signal deinterleaving is a critical task. While many researchers have applied deep learning and utilised known radar classes to construct interleaved pulse sequences training sets for deinterleaving models, these models face challenges in distinguishing between known and unknown radar classes in open-set scenarios. To address this challenge, the authors propose a novel model, the Reconstruction Bidirectional Recurrent Neural Network (RBi-RNN). RBi-RNN utilises input reconstruction and employs a joint training strategy incorporating cross-entropy loss, reconstruction loss, and centre loss. These strategies aim to maximise inter-class latent representation distances while minimising intra-class disparities. By incorporating an open-set recognition method based on extreme value theory, RBi-RNN adapts to open-set scenarios. Simulation results demonstrate the superiority of RBi-RNN over conventional models in both closed-set and open-set scenarios. In open-set scenarios, it successfully discriminates between known and unknown radar signals within interleaved pulse sequences, deinterleaving known radar classes with high stability. The authors lay the foundation for future unsupervised deinterleaving methods designed specifically for unknown radar pulses.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 6","pages":"965-981"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12542","citationCount":"0","resultStr":"{\"title\":\"An reconstruction bidirectional recurrent neural network -based deinterleaving method for known radar signals in open-set scenarios\",\"authors\":\"Haiping Zheng,&nbsp;Kai Xie,&nbsp;Yingshen Zhu,&nbsp;Jinjian Lin,&nbsp;Lihong Wang\",\"doi\":\"10.1049/rsn2.12542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In electronic warfare, radar signal deinterleaving is a critical task. While many researchers have applied deep learning and utilised known radar classes to construct interleaved pulse sequences training sets for deinterleaving models, these models face challenges in distinguishing between known and unknown radar classes in open-set scenarios. To address this challenge, the authors propose a novel model, the Reconstruction Bidirectional Recurrent Neural Network (RBi-RNN). RBi-RNN utilises input reconstruction and employs a joint training strategy incorporating cross-entropy loss, reconstruction loss, and centre loss. These strategies aim to maximise inter-class latent representation distances while minimising intra-class disparities. By incorporating an open-set recognition method based on extreme value theory, RBi-RNN adapts to open-set scenarios. Simulation results demonstrate the superiority of RBi-RNN over conventional models in both closed-set and open-set scenarios. In open-set scenarios, it successfully discriminates between known and unknown radar signals within interleaved pulse sequences, deinterleaving known radar classes with high stability. The authors lay the foundation for future unsupervised deinterleaving methods designed specifically for unknown radar pulses.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 6\",\"pages\":\"965-981\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12542\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12542\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12542","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在电子战中,雷达信号去交织是一项关键任务。虽然许多研究人员已应用深度学习并利用已知雷达类别来构建交错脉冲序列训练集,用于解交织模型,但这些模型在开放集场景中区分已知和未知雷达类别时面临挑战。为应对这一挑战,作者提出了一种新型模型--重建双向循环神经网络(RBi-RNN)。RBi-RNN 利用输入重构,采用联合训练策略,包括交叉熵损失、重构损失和中心损失。这些策略旨在最大化类间潜在表征距离,同时最小化类内差异。通过结合基于极值理论的开放集识别方法,RBi-RNN 能够适应开放集场景。仿真结果表明,在封闭集和开放集场景中,RBi-RNN 都优于传统模型。在开放集场景中,它能成功区分交错脉冲序列中的已知和未知雷达信号,以高稳定性去交错已知雷达类别。作者为未来专门针对未知雷达脉冲设计的无监督去交织方法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An reconstruction bidirectional recurrent neural network -based deinterleaving method for known radar signals in open-set scenarios

In electronic warfare, radar signal deinterleaving is a critical task. While many researchers have applied deep learning and utilised known radar classes to construct interleaved pulse sequences training sets for deinterleaving models, these models face challenges in distinguishing between known and unknown radar classes in open-set scenarios. To address this challenge, the authors propose a novel model, the Reconstruction Bidirectional Recurrent Neural Network (RBi-RNN). RBi-RNN utilises input reconstruction and employs a joint training strategy incorporating cross-entropy loss, reconstruction loss, and centre loss. These strategies aim to maximise inter-class latent representation distances while minimising intra-class disparities. By incorporating an open-set recognition method based on extreme value theory, RBi-RNN adapts to open-set scenarios. Simulation results demonstrate the superiority of RBi-RNN over conventional models in both closed-set and open-set scenarios. In open-set scenarios, it successfully discriminates between known and unknown radar signals within interleaved pulse sequences, deinterleaving known radar classes with high stability. The authors lay the foundation for future unsupervised deinterleaving methods designed specifically for unknown radar pulses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Matched cross-spectrum phase processing for source depth estimation in deep water Development of a reliable adaptive estimation approach for a low-cost attitude and heading reference system Availability evaluation and optimisation of advanced receiver autonomous integrity monitoring fault detection and exclusion considering temporal correlations Multi-agent multi-dimensional joint optimisation of jamming decision-making against multi-functional radar Active reconfigurable intelligent surface-aided multiple-input-multiple-output radar detection in the presence of clutter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1