Emil Hein , Risto Halonen , Thomas Wolbers , Tommi Makkonen , Markus Kyllönen , Liisa Kuula , Ilmari Kurki , Philipp Stepnicka , Anu-Katriina Pesonen
{"title":"睡眠是否能促进对急性压力的适应:一项实验研究","authors":"Emil Hein , Risto Halonen , Thomas Wolbers , Tommi Makkonen , Markus Kyllönen , Liisa Kuula , Ilmari Kurki , Philipp Stepnicka , Anu-Katriina Pesonen","doi":"10.1016/j.ynstr.2024.100613","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Evidence of the impact of chronic stress on sleep is abundant, yet experimental sleep studies with a focus on acute stress are scarce and the results are mixed. Our study aimed to fill this gap by experimentally investigating the effects of pre-sleep social stress on sleep dynamics during the subsequent night, as measured with polysomnography (PSG).</p></div><div><h3>Methods</h3><p>Thirty-four healthy individuals (65% females, M<sub>age</sub> = 25.76 years SD = 3.35) underwent a stress-inducing (SC) or neutral control condition (CC) in virtual reality (VR). We used overnight EEG measurements to analyze the basic sleep parameters and power spectral density (PSD) across the sleep cycles, and measured heart rate and its variability (HRV), skin electrodermal activity (EDA), and salivary cortisol to capture physiological arousal during the VR task and the pre-sleep period.</p></div><div><h3>Results</h3><p>Following acute stress (SC), the amount of slow-wave sleep (SWS) was higher and N2 sleep lower relative to CC, specifically in the first sleep cycle. In SC, PSD was elevated in the beta-low (16–24 Hz) and beta-high (25–35 Hz) frequency ranges during both stages N2 and SWS over the entire night.</p></div><div><h3>Conclusions</h3><p>Sleep promoted adaptation to acute social stress by a longer duration of SWS in the subsequent sleep period, especially in early sleep. A similar homeostatic effect towards restorative sleep is well-evidenced in animal model stress studies but has not been previously reported in experimental human studies. Whether the high-frequency PSD activity during stages N2 and SWS also serves in the resolution of transient stress, remains open.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"29 ","pages":"Article 100613"},"PeriodicalIF":4.3000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000092/pdfft?md5=75e8e488b45b3696b26a52389004630c&pid=1-s2.0-S2352289524000092-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Does sleep promote adaptation to acute stress: An experimental study\",\"authors\":\"Emil Hein , Risto Halonen , Thomas Wolbers , Tommi Makkonen , Markus Kyllönen , Liisa Kuula , Ilmari Kurki , Philipp Stepnicka , Anu-Katriina Pesonen\",\"doi\":\"10.1016/j.ynstr.2024.100613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Evidence of the impact of chronic stress on sleep is abundant, yet experimental sleep studies with a focus on acute stress are scarce and the results are mixed. Our study aimed to fill this gap by experimentally investigating the effects of pre-sleep social stress on sleep dynamics during the subsequent night, as measured with polysomnography (PSG).</p></div><div><h3>Methods</h3><p>Thirty-four healthy individuals (65% females, M<sub>age</sub> = 25.76 years SD = 3.35) underwent a stress-inducing (SC) or neutral control condition (CC) in virtual reality (VR). We used overnight EEG measurements to analyze the basic sleep parameters and power spectral density (PSD) across the sleep cycles, and measured heart rate and its variability (HRV), skin electrodermal activity (EDA), and salivary cortisol to capture physiological arousal during the VR task and the pre-sleep period.</p></div><div><h3>Results</h3><p>Following acute stress (SC), the amount of slow-wave sleep (SWS) was higher and N2 sleep lower relative to CC, specifically in the first sleep cycle. In SC, PSD was elevated in the beta-low (16–24 Hz) and beta-high (25–35 Hz) frequency ranges during both stages N2 and SWS over the entire night.</p></div><div><h3>Conclusions</h3><p>Sleep promoted adaptation to acute social stress by a longer duration of SWS in the subsequent sleep period, especially in early sleep. A similar homeostatic effect towards restorative sleep is well-evidenced in animal model stress studies but has not been previously reported in experimental human studies. Whether the high-frequency PSD activity during stages N2 and SWS also serves in the resolution of transient stress, remains open.</p></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":\"29 \",\"pages\":\"Article 100613\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352289524000092/pdfft?md5=75e8e488b45b3696b26a52389004630c&pid=1-s2.0-S2352289524000092-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352289524000092\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Does sleep promote adaptation to acute stress: An experimental study
Objectives
Evidence of the impact of chronic stress on sleep is abundant, yet experimental sleep studies with a focus on acute stress are scarce and the results are mixed. Our study aimed to fill this gap by experimentally investigating the effects of pre-sleep social stress on sleep dynamics during the subsequent night, as measured with polysomnography (PSG).
Methods
Thirty-four healthy individuals (65% females, Mage = 25.76 years SD = 3.35) underwent a stress-inducing (SC) or neutral control condition (CC) in virtual reality (VR). We used overnight EEG measurements to analyze the basic sleep parameters and power spectral density (PSD) across the sleep cycles, and measured heart rate and its variability (HRV), skin electrodermal activity (EDA), and salivary cortisol to capture physiological arousal during the VR task and the pre-sleep period.
Results
Following acute stress (SC), the amount of slow-wave sleep (SWS) was higher and N2 sleep lower relative to CC, specifically in the first sleep cycle. In SC, PSD was elevated in the beta-low (16–24 Hz) and beta-high (25–35 Hz) frequency ranges during both stages N2 and SWS over the entire night.
Conclusions
Sleep promoted adaptation to acute social stress by a longer duration of SWS in the subsequent sleep period, especially in early sleep. A similar homeostatic effect towards restorative sleep is well-evidenced in animal model stress studies but has not been previously reported in experimental human studies. Whether the high-frequency PSD activity during stages N2 and SWS also serves in the resolution of transient stress, remains open.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.